HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## **DECEMBER 2000** For U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District Book 2 of 6 Tables and Figures TAMS Consultants, Inc. # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## TABLE OF CONTENTS #### BOOK 1 - TEXT ## **EXECUTIVE SUMMARY** - 1. INTRODUCTION TO THE FEASIBILITY STUDY (FS) - 2. IDENTIFICATION OF POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs) AND TO-BE-CONSIDERED (TRC) CRITERIA - 3. IDENTIFICATION OF REMEDIAL ACTION OBJECTIVES (RAOs) AND RESPONSE ACTIONS - 4. IDENTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES - 5. DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES - 6. SCREENING OF REMEDIAL ACTION ALTERNATIVES - 7. ALTERNATIVE-SPECIFIC RISK ASSESSMENTS - 8. DETAILED ANALYSES OF REMEDIAL ALTERNATIVES - 9. COMPARATIVE ANALYSIS AND COST SENSITIVITY ANALYSES REFERENCES #### **BOOK 2 - TABLES AND FIGURES** #### **BOOK 3 - PLATES** ## **BOOK 4 - APPENDICES A THROUGH C** #### APPENDIX A BACKGROUND MATERIAL - A.1 Supporting Plates - A.2 Hudson River Upstream Baseline - A.3 Upstream Sources - A.4 Survey of Environmental Dredging Projects - A.5 Preliminary Human Health and Ecological Risk-Based Concentrations ## APPENDIX B VOLUME COMPUTATIONS ### APPENDIX C VENDOR AND TECHNOLOGY CONTACT INFORMATION #### **BOOK 5 - APPENDICES D THROUGH H** ## APPENDIX D MODEL INTERPRETATION, SPECIFICATIONS AND RESULTS - D.1 Model Interpretation: Use of Data Trends and Models in Evaluating Remedial Alternatives - D.2 Model Input Specifications - D.3 Model Results i TAMS # **HUDSON RIVER PCBs REASSESSMENT RI/FS** PHASE 3 REPORT: FEASIBILITY STUDY ## TABLE OF CONTENTS (CONTINUED) | APPENDIX E | ENGINEERING ANALYSIS | |------------|--| | E.1 | Technical Memorandum: Removal Productivity and Equipment Requirements | | | (Mechanical Dredges) | | E.2 | Technical Memorandum: Areas Capped for the Capping Alternatives- Concept | | | Development | | E.3 | Technical Memorandum: Volumes Removed for the Capping Alternatives- | | | Concept Development | | E.4 | Technical Memorandum: Capping with Dredging- Productivity and Equipment | | | Requirements (Mechanical Dredges) | | E.5 | Technical Memorandum: Applicability of Turbidity Barriers for Remediation | | E.6 | Technical Memorandum: Semi-Quantitative Assessment of Water Quality Impacts | | | Associated with Dredging Activities | | E.7 | Technical Memorandum: Backfill Estimates Concept Development | | E.8 | Technical Memorandum: Habitat Replacement/River Bank Restoration Concept | | | Development | | E.9 | Technical Memorandum: Requirements for a Transfer Facility Adjacent to the | | | Thompson Island Pool | | E.10 | Technical Memorandum: Dredged Sediment Processing Concept | | E.11 | Technical Memorandum: Evaluation of Off-Site Landfills for Final Disposal of | | | Dredged Sediments | | E.12 | Technical Memorandum: Distribution of Sediment Volume by PCB Concentration | | | Range in the Thompson Island Pool and Below Thompson Island Dam | | E.13 | Technical Memorandum: Estimation of Sediment PCB Inventories for Removal | | APPENDIX F | HABITAT REPLACEMENT PROGRAM DESCRIPTION | | APPENDIX G | MONITORING PROGRAM DEVELOPMENT | | | | | APPENDIX H | HYDRAULIC DREDGING REPORT AND DEBRIS SURVEY | | H 1 | Hydraulic Dredging Report | - Hydraulic Dredging Report - H.2 Debris Survey ## BOOK 6 - APPENDIX I ## APPENDIX I COST ESTIMATES - I.1 Cost Estimate Summary - I.2 **Detailed Estimate Table of Contents** - Detailed Estimate No Action Alternative I.3 - I.4 Detailed Estimate - Monitored Natural Attenuation Alternative - I.5 Detailed Estimate - Alternative CAP-3/10/Select - Detailed Estimate Alternative CAP-3/10/Select Beneficial Use I.6 ii **TAMS** # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY # TABLE OF CONTENTS (CONTINUED) | [.7 | Detailed Estimate - Alternative REM-3/10/Select | |------|--| | 8.1 | Detailed Estimate - Alternative REM-3/10/Select - Beneficial Use | | [.9 | Detailed Estimate - Alternative REM-0/0/3 | | [.10 | Detailed Estimate - Alternative REM-0/0/3- Beneficial Use | | [.11 | Detailed Estimate - Alternative REM-3/10/Select - Hydraulic Dredging | | [.12 | Detailed Estimate - Alternative REM-0/0/3- Hydraulic Dredging | iii TAMS # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 1 - 1-1 Phase 1 and Phase 2 Reassessment RI/FS Reports - 1-2 NYSDEC *Hot Spot* Summary - 1-3 Aroclor Composition and Properties - 1-4 Properties of PCB Homologue Groups - 1-5 Congener Specific Aroclor Composition - 1-6 Hudson River Sampling Investigations Summary - 1-7 Average Total PCB Concentrations in Water from GE Monitoring, January 1999 March 2000 - 1-8a Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg Wet Weight and Converted to a Consistent Estimator of Tri+ PCBs - 1-8b Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg-Lipid and Converted to a Consistent Estimator of Tri+ PCBs - 1-9 Human Health Risk Assessment Summary Upper Hudson River - 1-10 Human Health Risk Assessment Summary Mid-Hudson River ## Table 1-1 ## Phase 1 and Phase 2 Reassessment RI/FS Reports - Phase 1 Report Interim Characterization and Evaluation (USEPA, 1991a). Responsiveness Summary (USEPA, 1992). - Database Report-Volume 2A (USEPA, 1995). The database itself is updated periodically, incorporating data generated for this RRI/FS, as well as data generated by others (e.g., NYSDEC and GE). The database release utilized for the FS is Release 5.0 (October 2000). Responsiveness Summary for Volumes 2A, 2B, and 2C (USEPA, 1998a). - Preliminary Model Calibration Report (PMCR)-Volume 2B (USEPA, 1996a). Responsiveness Summary for Volumes 2A, 2B, and 2C (USEPA 1998a). Response to Peer Review Comments (USEPA, 2000g). - Data Evaluation and Interpretation Report (DEIR)-Volume 2C (USEPA, 1997a). Responsiveness Summary for Volumes 2A, 2B, and 2C (USEPA, 1998a). Response to Peer Review Comments (USEPA, 2000j). - Landfill/Treatment Facility Siting Survey (USEPA, 1997b). - Low Resolution Sediment Coring Report (LRC)-Volume 2C-A, Addendum to the DEIR, (USEPA, 1998b). Responsiveness Summary (USEPA, 1999b). Response to Peer Review Comments (USEPA, 2000j). - Baseline Modeling Report (BMR)-Volume 2D (USEPA, 1999a). Responsiveness Summary (USEPA, 2000b). Superseded by the Revised Baseline Modeling Report (RBMR) (USEPA, 2000a). Response to Peer Review Comments (USEPA, 2000n). - Baseline Ecological Risk Assessment (ERA)-Volume 2E (USEPA, 1999c). Responsiveness Summary (USEPA, 2000c). Response to Peer Review Comments (USEPA, 2000k). Baseline Ecological Risk Assessment for Future Risks in the Lower Hudson River- Volume 2E (USEPA, 1999e). Responsiveness Summary (USEPA, 2000c). Revised ERA (USEPA, 2000q) - Evaluation of Removal Action Alternatives-Thompson Island Pool-Early Action Assessment (USEPA, 1999n). - Human Health Risk Assessment (HHRA)-Volume 2F, Revised HHRA (USEPA, 2000g). Responsiveness Summary, March 2000. (USEPA, 2000d). Response to Peer Review Comments (USEPA, 2000m). Human Health Risk Assessment for the Mid-Hudson River-Volume 2F-A (USEPA, 1999f). Responsiveness Summary (USEPA, 2000i) Revised HHRA, Vol 2F (USEPA, 2000p). **Table 1-2 NYSDEC** *Hot Spot* ¹ **Summary** | Hot Spot | Loca | ition | | |----------|-------|----------|---| | Number | River | $Mile^2$ | Location Description | | 1 - 4 | | | See Note 3 | | 5 | 193.2 | 193.4 | Along west bank, extending almost to east bank | | 6 | 192.0 | 193.1 | Both sides of river; west bank RM 192.5 to 193.1; east bank RM 192.0 to 192.8 | | 7 | 192.2 | 192.4 | West bank | | 8 | 191.2 | 192.0 | East bank | | 9 | 191.3 | 191.5 | West bank | | 10 | 190.9 | 191.1 | West bank | | 11 | 190.8 | 190.8 | East bank | | 12 | 190.6 | 190.7 | East bank | | 13 | 190.5 | 190.5 | West channel at north end of Griffin Island | | 14 | 189.9 | | East bank main stem, east of Griffin Island | | 15 | 189.1 | | South end of Griffin Island, along west bank | | 16 | 189.1 | 189.5 | West bank | | 17 | 189.0 | 189.0 | East side main stem, north Thompson Island, west of canal cut | | 18 | 188.5 | 189.0 | West bank | | 19 | 188.5 | 188.5 | North end of Thompson Island, center (north) of TI Dam | | 20 | 188.5 | | West bank main stem, immediately north of TI Dam | | 21 | 188.3 | | West bank of west channel (west of Thompson Island) | | 22 | 188.0 | | West bank of Thompson Island (east channel) | | 23 | 187.8 | | West bank of Thompson Island (east channel) | | 24 | 187.5 | 187.7 | Southern end of Thompson Island, near (but not on) west bank | | 25 | 187.1 | | East bank (entire eastern side of) Galusha Island | | 26 | 186.3 | | West bank, north of Fort Miller Dam | | 27 | 186.3 | | East bank, north of Fort Miller Dam | | 28 | 185.7 | | East bank, includes southern mouth of navigation channel at Lock 6 | | 29 | 185.3 | | East bank | | 30 | 184.8 | | West bank | | 31 | 184.5 | | East bank | | 32 | 184.5 | | West bank | | 33 | 184.0 | | East bank | | 34 | 183.5 | | West bank, north of Northumberland Dam | | 35 | 183.4 | | East bank, north of Northumberland Dam | | 36 | 169.4 | | East bank and east channel, north of Stillwater Dam/Lock 4 | | 37 | 166.0 | | West bank, immediately north of Lock 3 | | 38 | 164.4 | | West bank of west channel, opposite southern half of Champlain Island | | 39 | 163.6 | 164.2 | West bank, opposite Quack Island (north of Lock 2) | | 40 | 163.7 | 164.2 | East bank, opposite Quack Island (north of Lock 2) | ### Notes: - 1. Hot Spot numbering and locations based on 1984/1977 DEC survey - 2. River Miles approximate, based on Plates 1-7 - 3. *Hot Spots*
1 through 4 are not shown since their continued existence is highly uncertain due to channel maintenance dredging subsequent to NYSDEC's 1977/78 sampling. Table 1-3 Aroclor Composition and Properties | | | | | | | | Aroclor | Number | | | | | | | |-------------------------------|------------|--------|--------|-------|-------|--------|---------|--------|-------|--------|--------|--------|--------|--------| | Homologue Group | 10 | 16 | 12 | 21 | 12 | 32 | 12 | 42 | 12 | 48 | 12 | 54 | 12 | 60 | | Biphenyl | < 0.1% | 0 | 11 | 10 | <0.1% | 5%? | < 0.1% | 0 | 0 | 0 | <0.1% | 0 | 0 | 0 | | Monochlorobiphenyl | 1 | 2 | 51 | 50 | 31 | 26 | 1 | 1 | 0 | 0 | < 0.1% | 0 | 0 | 0 | | Dichlorobiphenyl | 20 | 19 | 32 | 35 | 24 | 29 | 16 | 13 | 2 | 1 | 0.5% | 0 | 0 | 0 | | Trichlorobiphenyl | 57 | 57 | 4 | 4 | 28 | 24 | 49 | 45 | 18 | 2(?) | 1 | 1 | 0 | 0 | | Tetrachlorobiphenyl | 21 | 22 | 2 | 1 | 12 | 15 | 25 | 31 | 40 | 49 | 21 | 15 | 1 | 0 | | Pentachlorobiphenyl | 1 | 0 | < 0.5% | 0 | 4 | 0 | 8 | 10 | 36 | 27 | 48 | 53 | 12 | 12 | | Hexachlorobiphenyl | <0.1% | 0 | 0 | 0 | <0.1% | 0 | 1 | 0 | 4 | 2 | 23 | 26 | 38 | 42 | | Heptachlorobiphenyl | 0 | 0 | 0 | 0 | 0 | 0 | < 0.1% | 0 | 0 | 0 | 6 | 4 | 41 | 38 | | Octachlorobiphenyl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | Nonachlorobiphenyl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Decachlorobiphenyl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Molecular Weight (avg) | 257 | 258 | 192 | 200.7 | 221 | 232.5 | 261 | 266.5 | 288 | 299.5 | 327 | 328.4 | 370 | 361 | | Percent Chlorine | 4 | -1 | 20.5 - | 21.5 | 3 | 2 | 4 | -2 | 4 | -8 | 5 | 4 | 6 | 0 | | Density (specific gravity) | 1.33 | - 1.40 | 1.15 - | 1.19 | 1.24 | - 1.28 | 1.35 | - 1.42 | 1.40 | - 1.44 | 1.49 | - 1.50 | 1.57 - | - 1.62 | | Melting Point (deg C) | No l | Data | 1 | | -3: | 5.5 |] | 19 | - | 7 | 1 | 0 | 3 | 1 | | Boiling range (deg C) | 323 - | - 356 | 275 - | 320 | 270 | - 325 | 325 | - 366 | 340 | - 375 | 365 | - 390 | 385 - | - 420 | | Log Koc | 4.25 | - 5.26 | 2.44 - | 3.76 | 2.83 | - 3.85 | 3.36 | - 4.09 | 4.74 | - 5.44 | 4.8 | - 6.6 | 5.54 - | - 6.83 | | Log Kow | 4.38 | - 5.88 | 2.8 - | 4.7 | 3.2 | - 5.2 | 4.0 | - 5.8 | 5.6 | - 6.3 | 6.0 | - 6.8 | 6.11 - | - 7.15 | | Water solubility (mg/L@ 20 C) | 0.05 - 0.9 | 91 | 0.2 | - 40 | 1. | 45 | 0.045 | - 0.75 | 0.052 | - 0.32 | 0.012 | 0.07 | 0.0027 | - 0.08 | | Vapor Pressure (mm Hg @ 20 C) | 4.0I | E-04 | 6.7E | E-03 | 4.6I | E-03 | 4.0I | E-04 | 1.71 | E-04 | 7.0I | E-05 | 4.1I | E-05 | | Henry's Constant (atm m3/mol) | 1.2F | E-03 | 3.2F | E-04 | 8.6I | E-04 | 5.6I | E-04 | 3.5I | E-04 | 2.51 | E-03 | 7.2F | E-03 | #### Notes: ## Aroclor Composition: $Values\ in\ left-hand\ column\ from\ Hutzinger\ (Hutzinger,\ Safe,\ McDonald,\ 1974)\ as\ cited\ in\ Montgomery\ and\ Welkom,\ 1990$ Values in right-hand column from Brinkman and DeKok, 1980, as cited in Erickson, 1997. Other data from various secondary sources as cited in Erickson (1997); Mackay, Shiu, and Ma (1992); and Montgomery and Welkom (1990) Only limited data available for Aroclors 1262 and 1268; these are not known to have been discharged into the Hudson River and are not included in the tabulation. Table 1-4 Properties of PCB Homologue Groups | | | Number | | | | | | | |---------------------|-------------|-----------|-----------|----------|---------|----------------------|----------------------|-------------------| | | CAS | of | Molecular | Weight % | | Melting Point | Boiling Point | | | Homologue | Number | Chlorines | Weight | Chlorine | Density | (deg C) | (deg C) | Solubility (mg/L) | | Biphenyl | | 0 | 154.21 | 0.00% | 0.866 | 71 | 256 | | | Chlorobiphenyl | 27323-18-8 | 1 | 188.66 | 18.79% | 1.15 | 25 - 78 | 274 - 285 | 0.06 - 9.5 | | Dichlorobiphenyl | 25512-42-9 | 2 | 223.11 | 31.78% | 1.3 | 24 - 149 | 312 - 324 | 0.06 - 2.0 | | Trichlorobiphenyl | 25323-68-6 | 3 | 257.56 | 41.29% | ND | 28 - 88 | 337 - (avg) | 0.015 - 1.09 | | Tetrachlorobiphenyl | 26914-33-0 | 4 | 292.02 | 48.56% | 1.5 | 83 - 172 | 360 - (avg) | 0.0008-0.26 | | Pentachlorobiphenyl | 25429-29-2 | 5 | 326.47 | 54.30% | 1.5 | Conflicting data | 381 - (avg) | 0.004 - 0.099 | | Hexachlorobiphenyl | 26601-64-9 | 6 | 360.92 | 58.94% | 1.6 | 77 - 160 | 400 - (avg) | 0.0004 - 0.038 | | Heptachlorobiphenyl | 286655-71-2 | 7 | 395.38 | 62.77% | 1.7 | 122.4 - 149 | 417 - (avg) | 0.00045 - 0.014 | | Octachlorobiphenyl | 31472-83-0 | 8 | 464.28 | 65.99% | 1.7 | 159 - 162 | 432 - (avg) | 0.0002 - 0.02 | | Nonachlorobiphenyl | 53742-07-7 | 9 | 464.28 | 68.73% | 1.8 | 182.6 - 206 | 445 - (avg) | 0.00018 - 0.002 | | Decachlorobiphenyl | 2051-24-3 | 10 | 498.93 | 71.04% | 1.507 | 300 - 310 | 456 - Calc | 4E-07 to 7.6E-04 | ## Sources: CRC Handbook, 64th Edition (1983) Patty's Industrial Hygiene and Toxicology (3rd Edition), 1981 Mackay, Shiu, Ma (1992) Table 1-5 Congener-specific Aroclor Composition | Congener | 1016 (%) | 1221 (%) | 1232 (%) | 1242 (%) | 1248 (%) | 1254 (%) | 1260 (%) | |----------|----------|----------|----------|----------|----------|----------|----------| | BZ#1 | 0.707 | 35.813 | 18.125 | 0.535 | | . (12) | () | | BZ#2 | | | | 31000 | | | | | BZ#3 | | 17.438 | 10.225 | 0.234 | | | | | BZ#4 | 3.625 | 4.856 | 3.875 | 2.863 | | | | | BZ#5 | 2.020 | 1.218 | 0.444 | 2.000 | | 0.036 | 0.020 | | BZ#6 | 1.513 | 2.581 | 2.050 | 1.240 | 0.209 | 0.020 | 0.020 | | BZ#7 | 1.010 | 1.444 | 0.937 | 1.2.0 | 0.20 | | | | BZ#8 * | 8.519 | 10.181 | 9.588 | 6.581 | 0.608 | 0.062 | 0.075 | | BZ#9 | 0.669 | 1.563 | 1.066 | 0.530 | 0.038 | 0.002 | 0.075 | | BZ#10 | 0.258 | 0.576 | 0.379 | 0.202 | 0.050 | | | | BZ#12 | 0.083 | 0.436 | 0.311 | 0.083 | | | | | BZ#15 | 2.144 | 2.525 | 2.713 | 1.669 | 0.161 | | 0.043 | | BZ#16 | 3.056 | 0.351 | 1.338 | 2.438 | 0.756 | 0.038 | 0.035 | | BZ#17 | 3.763 | 0.503 | 1.675 | 2.994 | 1.028 | 0.020 | 0.042 | | BZ#18 * | 10.569 | 1.142 | 4.400 | 7.969 | 3.931 | 0.117 | 0.078 | | BZ#19 | 0.980 | 0.144 | 0.459 | 0.766 | 0.223 | 0.117 | 0.070 | | BZ#20 | 0.972 | 0.175 | 0.615 | 0.901 | 0.418 | 0.047 | 0.032 | | BZ#22 | 3.050 | 0.279 | 1.406 | 2.369 | 1.154 | 0.059 | 0.050 | | BZ#23NT | 0.066 | 0.064 | 0.063 | 0.067 | 0.061 | 0.057 | | | BZ#24NT | 2.000 | | 2.300 | 2.307 | 2.301 | 2.30, | | | BZ#25 | 0.619 | 0.115 | 0.311 | 0.503 | 0.112 | | 0.048 | | BZ#26 | 1.725 | 0.244 | 0.843 | 1.394 | 0.479 | 0.045 | 0.039 | | BZ#27 | 0.581 | 0.088 | 0.284 | 0.486 | 0.134 | | | | BZ#28 * | 9.456 | 0.831 | 3.950 | 7.319 | 3.644 | 0.104 | 0.081 | | BZ#29 | 0.149 | 0.043 | 0.077 | 0.123 | | | | | BZ#31 | 8.294 | 0.734 | 3.488 | 6.450 | 4.463 | 0.214 | 0.088 | | BZ#32NT | 2.048 | 0.370 | 1.036 | 1.671 | 0.756 | 0.019 | 0.015 | | BZ#33 | 5.369 | 0.536 | 2.400 | 4.256 | 1.888 | 0.065 | 0.054 | | BZ#34NT | 0.028 | | | 0.018 | | | | | BZ#37 | 1.313 | 0.196 | 1.017 | 1.688 | 0.634 | 0.040 | 0.040 | | BZ#40 | | 0.063 | 0.287 | | | 0.038 | 0.023 | | BZ#41 | 1.975 | 0.085 | 0.383 | 1.606 | 2.281 | 0.208 | 0.043 | | BZ#42 | 1.215 | 0.101 | 0.531 | 1.003 | 1.431 | 0.159 | 0.031 | | BZ#44 * | 4.125 | 0.288 | 1.750 | 3.300 | 6.069 | 2.250 | 0.058 | | BZ#45 | 1.198 | 0.110 | 0.484 | 0.943 | 1.185 | 0.075 | 0.024 | | BZ#47 | 0.841 | 0.106 | 0.373 | 0.670 | 1.131 | 0.200 | | | BZ#48NT | 1.672 | 0.135 | 0.674 | 1.315 | 1.766 | 0.186 | 0.029 | | BZ#49 * | 3.425 | 0.276 | 1.400 | 2.675 | 4.400 | 1.309 | 0.035 | | BZ#51NT | 0.325 | 0.050 | 0.151 | 0.257 | 0.308 | 0.034 | | | BZ#52 * | 3.950 | 0.307 | 1.681 | 3.138 | 6.356 | 5.044 | 0.251 | | BZ#53 | 0.921 | | 0.320 | 0.688 | 1.036 | 0.080 | | | BZ#56 | 0.060 | 0.133 | 0.798 | 1.519 | 2.525 | 0.388 | 0.046 | | BZ#58NT | | | | | | | | | BZ#60NT | 0.019 | 0.045 | 0.260 | 0.541 | 0.847 | 0.182 | 0.049 | | BZ#63NT | 0.044 | | 0.059 | 0.127 | 0.193 | 0.040 | | | BZ#64NT | 1.811 | 0.112 | 0.749 | 1.549 | 2.796 | 0.582 | 0.015 | | BZ#66 * | 0.358 | 0.244 | 1.625 | 3.163 | 5.369 | 1.038 | 0.063 | | BZ#67NT | 0.073 | 0.038 | 0.074 | 0.138 | 0.162 | | | | BZ#69NT | 0.524 | 0.000 | 1.500 | 2 442 | | 2 25 5 | 0.050 | | BZ#70 | 0.624 | 0.288 | 1.738 | 3.413 | 6.888 | 3.275 | 0.063 | | BZ#74 | 0.411 | 0.156 | 0.853 | 1.738 | 3.044 | 0.864 | 0.038 | | BZ#75 | 0.116 | 0.049 | 0.060 | 0.102 | 0.119 | 0.038 | | | BZ#77 | <u> </u> | 0.043 | 0.163 | 0.319 | 0.421 | 1.001 | | | BZ#82 | | 0.041 | 0.139 | 0.324 | 0.865 | 1.381 | | | BZ#83 | 0.000 | 0.028 | 0.057 | 0.100 | 0.224 | 0.412 | 0.124 | | BZ#84 | 0.069 | 0.051 | 0.214 | 0.454 | 1.147 | 2.125 | 0.124 | | BZ#85 | 1 | 0.054 | 0.151 | 0.357 | 0.859 | 1.179 | 0.039 | | BZ#87 * | | 0.103 | 0.257 | 0.555 | 1.369 | 3.825 | 0.464 | Page 1 of 3 TAMS Table 1-5 Congener-specific Aroclor Composition | Congener | 1016 (%) | 1221 (%) | 1232 (%) | 1242 (%) | 1248 (%) | 1254 (%) | 1260 (%) | |--------------|----------|----------|----------|----------|----------|----------|----------| | BZ#91 | 0.120 | 0.045 | 0.101 | 0.211 | 0.923 | 1.149 | 0.059 | | BZ#92 | 0.030 | 0.030 | 0.074 | 0.153 | 0.371 | 1.279 | 0.329 | | BZ#95 | 0.636 | 0.033 | | 0.067 | 2.000 | 8.819 | 3.181 | | BZ#96NT | 0.092 | | 0.043 | 0.076 | 0.136 | 0.073 | | | BZ#97 | | 0.054 | 0.184 | 0.438 | 1.164 | 2.519 | 0.111 | | BZ#99 | 0.028 | 0.066 | 0.220 | 0.569 | 1.431 | 3.019 | 0.056 | | BZ#101/BZ#90 | 0.046 | 0.087 | 0.404 | 0.932 | 2.456 | 8.738 | 3.031 | | BZ#105 * | | 0.058 | 0.179 | 0.507 | 1.369 | 2.563 | 0.058 | | BZ#107 | | | 0.043 | 0.090 | 0.191 | 0.553 | | | BZ#110 | | 0.107 | 0.419 | 0.998 | 2.881 | 10.075 | 1.481 | | BZ#114NT | | | 0.011 | 0.051 | 0.104 | 0.209 | | | BZ#115 | | 0.046 | 0.047 | 0.091 | 0.225 | 0.380 | | | BZ#118 * | | 0.076 | 0.236 | 0.696 | 1.756 | 6.038 | | | BZ#119 | | | 0.044 | 0.051 | 0.079 | 0.112 | | | BZ#122 | | 0.041 | 0.017 | 0.049 | 0.081 | | 0.494 | | BZ#123 | | | 0.027 | 0.044 | 0.068 | | | | BZ#126 | | | | | 0.053 | | | | BZ#128 * | | | 0.041 | 0.072 | 0.110 | 1.193 | 0.474 | | BZ#129 | | | | 0.041 | 0.060 | 0.385 | 0.127 | | BZ#135 | | | | | | 0.909 | 1.413 | | BZ#136 | | | 0.036 | 0.045 | 0.082 |
0.668 | 1.363 | | BZ#137 | | | | 0.054 | 0.066 | 0.432 | | | BZ#138 * | | 0.039 | 0.106 | 0.183 | 0.388 | 6.919 | 8.538 | | BZ#140NT | | | | | | | | | BZ#141 | | | 0.059 | 0.059 | 0.101 | 0.788 | 1.713 | | BZ#143 | | | | | | | | | BZ#144NT | | | | | | 0.250 | 0.540 | | BZ#146NT | | | 0.008 | 0.012 | 0.036 | 0.575 | 0.895 | | BZ#149 | | 0.035 | 0.111 | 0.118 | 0.313 | 4.381 | 8.944 | | BZ#151 | | | 0.023 | | | 0.202 | 2.713 | | BZ#153 * | | 0.027 | 0.095 | 0.111 | 0.233 | 4.206 | 9.588 | | BZ#156 | | | | 0.040 | 0.073 | 0.738 | | | BZ#157 | | | | 0.081 | 0.068 | 0.168 | 0.521 | | BZ#158 | | | 0.034 | 0.055 | 0.083 | 0.776 | 0.636 | | BZ#167 | | | | 0.032 | 0.052 | 0.589 | 0.371 | | BZ#169NT | | | | | | | | | BZ#170 * | | | | 0.052 | 0.058 | | 3.569 | | BZ#171 | | | | | | 0.134 | 1.363 | | BZ#172NT | | | | | | 0.093 | 0.585 | | BZ#174 | | | 0.054 | | 0.041 | 0.451 | 4.381 | | BZ#175NT | | | | | | | 0.145 | | BZ#177 | | | 0.044 | 0.00 | 0.038 | 0.271 | 2.194 | | BZ#178 | | | 0.100 | 0.051 | 0.053 | 0.151 | 1.136 | | BZ#180 * | | | 0.000 | | 0.077 | 0.4 | 9.844 | | BZ#183 * | | | 0.032 | | 0.029 | 0.246 | 2.050 | | BZ#184NT * | | | | | | 0.0- | 0.087 | | BZ#185 | | | 0.6:- | | 0.022 | 0.075 | 0.534 | | BZ#187 * | | | 0.047 | | 0.033 | 0.308 | 4.556 | | BZ#189 | | | | | 0.00 | | 0.137 | | BZ#190 | | | | | 0.041 | | 0.689 | | BZ#191 | | | | | | 0.050 | 0.233 | | BZ#193 | | | | | | | 0.311 | | BZ#194 | | | | | 0.031 | | 1.631 | | BZ#195 * | | | | | 0.051 | | 0.706 | | BZ#196 | | | | | 0.036 | | 0.911 | | BZ#197NT | | | | | | | | | BZ#198 | | | | | | | 0.133 | | BZ#199 | | | | | | 0.047 | 0.283 | Page 2 of 3 TAMS Table 1-5 Congener-specific Aroclor Composition | Congener | 1016 (%) | 1221 (%) | 1232 (%) | 1242 (%) | 1248 (%) | 1254 (%) | 1260 (%) | |-----------|----------|----------|----------|----------|----------|----------|----------| | BZ#200 | | | | | 0.064 | 0.071 | | | BZ#201 | | | | | | 0.076 | 1.644 | | BZ#202 | | | | | | 0.043 | 0.349 | | BZ#203NT | | | | | | | 1.046 | | BZ#205 | | | | | | | 0.112 | | BZ#206 * | | | | | 0.044 | | 0.553 | | BZ#207 | | | | | | | 0.077 | | BZ#208 | | | | | | | 0.138 | | BZ#209 * | | | | | | | 0.081 | | Total (%) | 93.739 | 88.092 | 91.141 | 91.364 | 91.033 | 96.532 | 88.242 | #### Notes: BZ# (after Ballschmiter and Zell) is equivalent to IUPAC # for all congeners except three octachlorobiphenyls (#199 - 201). NT = Non-Target congener. Quantitated relative to BZ#52; identification confirmed by retention time standard. Blank spaces indicate that the indicated analyte was not detected. BZ#101 co-elutes with BZ#90; BZ#90 not believed to be a significant part of this pair. Total % is the sum of all listed congeners. Difference between the Total % and 100% can be assumed to be comprised of the 69 congeners not analyzed. Data from average of pure Aroclor standards analyzed for Hudson River RI/FS by Aquatec for TAMS, April 1994. Page 3 of 3 TAMS Table 1-6 Hudson River Sampling Investigations Summary #### Water Samples | Organization | Sampler | Year(s) | Quantity | Matrix Notes | Analysis | |----------------|---------|-------------|----------|-----------------------------------|-------------------------| | USEPA | TAMS | 1993 | 106 | Dissolved Phase | PCB Congeners | | USEPA | TAMS | 1993 | 109 | Suspended (Particulate) | PCB Congeners | | GE | | 1991 - 2000 | 3,873 | 3667 Whole Water; 206 Dissolved I | PCB Congeners; Aroclors | | USGS | | 1974 - 1997 | 7,576 | Waterford to Glens Falls | Aroclors | | Total Water Sa | amples | | 11,664 | | | #### **Sediment Samples** | Organization | Sampler | Year(s) | Quantity | Matrix Notes | Analysis | |---------------|-----------|------------|----------|------------------------|--| | NYSDEC | | 1977 | 1,613 | Cores and Grabs | Aroclors; grain size; % solids | | NYSDEC | | 1984 | 1,941 | Cores and Grabs | Aroclors; %solids | | USEPA | TAMS | 1993 -1994 | 929 | Cores; RM 154 - RM 195 | PCB Congeners; radionuclides; metals; grain size | | GE | | 1988 -1999 | 1,500 | Cores and Composites | PCB Congeners; Aroclors | | Total Sedimen | t Samples | | 5,983 | | | #### **Biota Samples** | Organization | Sampler | Year(s) | Quantity | Matrix Notes | Analysis | |----------------|---------|-------------|----------|----------------------|---| | NYSDEC | | 1970 - 1999 | 16,793 | Predominantly Fish | PCB Congeners; Aroclors; metals; organics; dioxin/furan | | NYSDOH | | 1973 - 1985 | 777 | Invertebrates | Aroclors | | GE | | 1977 - 1999 | 1,041 | Predominantly Fish | PCB Congeners; Aroclors; lipids | | USEPA | TAMS | 1993 | 203 | Fish, invertebrates | PCB Congeners; lipids | | NOAA | | 1993 - 1995 | 235 | Fish | PCB Congeners; lipids | | USFWS | | 1994 - 1997 | 96 | Avian, invertebrates | PCB Congeners; pesticides; dioxin/furan; lipids | | Total Biota Sa | mples | | 19,145 | | | #### Notes: GE = General Electric Company NOAA = National Oceanographic and Atmospheric Administration NYSDEC = New York State Department of Environmental Conservation NYSDOH = New York State Department of Health TAMS = TAMS Consultants, Inc. USEPA = United States Environmental Protection Agency USFWS = United States Fish and Wildlife Service USGS = United States Geological Survey Sample quantities based on data in Hudson River Database, Release (5.0), (October, 2000) Only principal analyses are listed. Some samples in may have been analyzed for additional parameters Table 1-7 Average Total PCB Concentrations in Water from GE Monitoring, January 1999—March 2000 | Station | River
Mile | Average
Concentration
(ng/L) | |--|---------------|------------------------------------| | Fenimore Bridge above Hudson Falls | 197 | 6.4 | | Rt. 197 bridge, Rogers Island | 194.4 | 17.1 | | Thompson Island Dam West | 189 | 117.7 | | Below Thompson Island Dam, center channel (PRW2) | 188.4 | 45 | | Rt. 29 Bridge, Schuylerville | 181.4 | 65.5 | ## Note: Averages calculated with non-detects set to one-half the detection limit of 11 ng/L. Table 1-8a Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg Wet Weight and Converted to a Consistent Estimator of Tri+ PCBs | Species | Thompson | Stillwater | Waterford | Below Federal | |-----------------|--------------|--------------|--------------|----------------| | | Island Pool | Reach | Reach | Dam | | | RM 188 - 193 | RM 168 – 176 | RM 155 – 157 | RM 142 – 153.2 | | Brown Bullhead | 11.2 | 8.25 | 2.98 | 1.85 | | Carp | 28.64 | 41.25 | 18.92 | 11.01 | | Largemouth Bass | 16.06 | 6.92 | 3.27 | 9.7 | | Pumpkinseed | 8.64 | 4.77 | | 4.5 | | Yellow Perch | 7.59 | 1.62 | | 1.16 | Table 1-8b Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg-Lipid and Converted to a Consistent Estimator of Tri+ PCBs | Species | Thompson | Stillwater | Waterford | Below Federal | |-----------------|--------------|--------------|--------------|----------------| | | Island Pool | Reach | Reach | Dam | | | RM 188 - 193 | RM 168 – 176 | RM 155 – 157 | RM 142 – 153.2 | | Brown Bullhead | 304 | 230 | 104 | 36 | | Carp | 243 | 312 | 197 | 81 | | Largemouth Bass | 1128 | 436 | 230 | 289 | | Pumpkinseed | 253 | 125 | | 134 | | Yellow Perch | 365 | 96 | | 90 | # Table 1-9 Human Health Risk Assessment Summary Upper Hudson River **Table 1-9a: Cancer Risk Summary** | | Point Estimate Cancer Risk Summary* | | | | | |----------------------|---------------------------------------|--------------------------------------|--|--|--| | Pathway | RME Risk | | | | | | Ingestion of Fish | | | | | | | Total* | 3×10^{-5} (3 in 100,000) | 1×10^{-3} (1 in 1,000) | | | | | Adult | 1×10^{-5} (1 in 100,000) | 6×10^{-4} (6 in 10,000) | | | | | Adolescent | 7×10^{-6} (7 in 1,000,000) | 4×10^{-4} (4 in 10,000) | | | | | Young Child | 1×10^{-5} (1 in 100,000) | 4×10^{-4} (4 in 10,000) | | | | | Exposure to Sediment | | | | | | | Baseline Recreator | 2×10^{-7} (2 in 10,000,000) | 2×10^{-6} (2 in 1,000,000) | | | | | Avid Recreator | 1×10^{-6} (1 in 1,000,000) | 9×10^{-6} (9 in 1,000,000) | | | | | Exposure to Water | | | | | | | Baseline Recreator | 3×10^{-8} (3 in 100,000,000) | 2×10^{-7} (2 in 10,000,000) | | | | | Avid Recreator | 1×10^{-7} (1 in 10,000,000) | 1×10^{-6} (1 in 1,000,000) | | | | | Inhalation of Air | 2×10^{-8} (2 in 100,000,000) | 1×10^{-6} (1 in 1,000,000) | | | | ^{*}Total risk for young child (aged 1-6), adolescent (aged 7-18), and adult (over 18). **Table 1-9b: Non-Cancer Hazard Summary** | Point Estimate Non-Cancer Hazard Summary* | | | | | | |---|---|----------------|--|--|--| | Pathway | Central Tendency Non-Cancer Hazard Index RME Non-Cancer Hazard In | | | | | | Ingestion of Fish | | | | | | | Adult | 7 | 65 | | | | | Adolescent | 8 | 71 | | | | | Child | 12 | 104 | | | | | Exposure to Sediment | | | | | | | Baseline Recreator | 0.03 | 0.04 | | | | | Avid Recreator | 0.2 | 0.3 | | | | | Exposure to Water | | | | | | | Baseline Recreator | 0.01 | 0.02 | | | | | Avid Recreator | 0.06 | 0.1 | | | | | Inhalation of Air** | Not Calculated | Not Calculated | | | | Note: All Values from Revised HHRA (USEPA, 2000p) ^{*}Values for child or adolescent, which are higher than adult for these pathways. ^{**}Non-cancer hazards were not calculated for the inhalation pathway due to a lack of non-cancer toxicity values for this pa ## Table 1-10 Human Health Risk Assessment Summary Mid-Hudson River **Table 1-10a: Cancer Risk Summary** | Point Estimate Cancer Risk Summary | | | | | |------------------------------------|---
---------------------------------------|--|--| | Pathway | Central Tendency Risk | RME Risk | | | | Ingestion of Fish | | | | | | Total* | 1×10^{-5} (1 in 100,000) | $7 \times 10^{-4} $ (7 in 10,000) | | | | Adult | 6×10^{-6} (6 in 1,000,000) | $3 \times 10^{-4} $ (3 in 10,000) | | | | Adolescent | 3×10^{-6} (3 in 1,000,000) | $2 \times 10^{-4} $ (2 in 10,000) | | | | Child | 5×10^{-6} (5 in 1,000,000) | $2 \times 10^{-4} $ (2 in 10,000) | | | | Swimming/Wading | | | | | | Exposure to Sediment* | 2×10^{-8} (2 in 100,000,000) | 2×10^{-7} (2 in 10,000,000) | | | | Exposure to Water* | 9×10^{-9} (9 in 1,000,000,000) | 6×10^{-8} (6 in 100,000,000) | | | | Consumption of Drinking Water* | 3×10^{-8} (3 in 100,000,000) | 1×10^{-7} (1 in 10,000,000) | | | ^{*}Total risk for young child (aged 1-6), adolescent (aged 7-18), and adult (over 18). **Table 1-10b: Non-Cancer Hazard Summary** | Point Estimate Non-Cancer Hazard Summary | | | | | |--|-----------------------------|----------------|--|--| | Pathway | Central Tendency Non-Cancer | RME Non-Cancer | | | | | Hazard Index | Hazard Index | | | | Ingestion of Fish | | | | | | Adult | 3 | 34 | | | | Adolescent | 4 | 37 | | | | Child | 6 | 53 | | | | Swimming/Wading | | | | | | Exposure to Sediment* | 0.002 | 0.004 | | | | Exposure to Water* | 0.005 | 0.007 | | | | Consumption of Drinking Water* | 0.01 | 0.02 | | | Note: All Values from Revised HHRA (USEPA, 2000p) # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 2 | 2-1a | Chemical-Specific Potential Applicable or Relevant and Appropriate Requirements (ARARs | |------|---| | 2-1b | Chemical-Specific Criteria, Advisories, and Guidance to be Considered (TBCs) | | 2-2a | Location-Specific Potential Applicable or Relevant and Appropriate Requirements (ARARs) | | 2-2b | Location-Specific Criteria, Advisories, and Guidance to be Considered (TBCs) | | 2-3a | Action-Specific Potential Applicable or Relevant and Appropriate Requirements (ARARs) | | 2-3b | Action-Specific Criteria, Advisories, and Guidance to be Considered (TBCs) | ## Table 2-1a ## **Chemical-Specific** ## Potential Applicable or Relevant and Appropriate Requirements (ARARs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|----------------------------------|--------|--| | RIVER WATER | | | | | Safe Drinking
Water Act, 42
U.S.C. §§ 300f -
300j-26 | 40 CFR § 141.61 | ARAR | The Maximum Contaminant Level (MCL) for PCBs in finished drinking water supplied to consumers of public water supply is 0.0005 ppm (0.5 μ g/L). | | Clean Water Act
[Federal Water
Pollution Control
Act, as amended],
33 U.S.C. §§ 1251-
1387 | 40 CFR § 129.105(a)(4) | ARAR | The ambient water criterion for navigable waters is $0.001~\mu\text{g/L}$ total PCBs. | | New York State
Environmental
Conservation Law
(ECL) Article 15,
Title 3 and Article
17, Titles 3 and 8 | 6 NYCRR Parts 700
through 706 | ARAR | Establishes New York Ambient Water Quality Standards for almost 200 contaminants. For PCBs in surface water the values are (a) 1x10 ⁻⁶ μg/L (ppb) for protection of health of human consumers of fish; (b) 0.09 μg/L for protection of human health and drinking water sources; and (c) 1.2 x 10 ⁻⁴ μg/L for protection of wildlife. | | AIR | | | | | No promulgated chemical-specific ARARs identified for air. | | | | | SEDIMENT | | | | | No promulgated chemical-specific ARARs identified for sediment | | | | Note: The tolerance level of 2 ppm PCBs in fish and shellfish (edible portion) shipped in interstate commerce (21 CFR § 109.30(a)(7)) is not an ARAR for this site because the Federal Food, Drug and Cosmetic Act, 21 U.S.C. § 301-393, the statute under which the tolerance level is promulgated, is not a Federal environmental law or a State environmental law or facility siting law. ## Table 2-1b # **Chemical-Specific** # Criteria, Advisories and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|---|------------------|--| | ВІОТА | | | | | International Joint
Commission - United
States and Canada | Great Lakes Water Quality Agreement of 1978, as amended | To Be Considered | The concentration of total PCBs in fish tissue (whole fish, wet weight basis) should not exceed $0.1~\mu g/g$ for the protection of birds and animals that consume fish. | | NOAA - Damage
Assessment Center | Reproductive, Developmental and
Immunotoxic Effects of PCBs in
Fish: a Summary of Laboratory
and Field Studies, March 1999
(Monosson, E.) | To Be Considered | The effective concentrations for reproductive and developmental toxicity fall within the ranges of the PCB concentrations found in some of the most contaminated Hudson River fish. There are currently an insufficient number of studies to estimate the immunotoxicity of PCBs in fish. Improper functioning of the reproductive system and adverse effects on development may result from adult fish liver concentrations of 25 to 71 ppm Aroclor 1254. PCB Congener BZ #77: 0.3 to 5 ppm (wet wt) in adult fish livers reduces egg deposition, pituitary gonadotropin, and gonadosomatic index, alters retinoid concentration (Vitamin A), and reduces larval survival. 1.3 ppm in eggs reduces larval survival. | | NYSDEC Division of
Fish and Wildlife | Niagara River Biota
Contamination Project: Fish Flesh
Criteria for Piscivorous Wildlife,
Technical Report 87-3, July 1987,
pp. 41-48 and Table 26 (Newell <i>et al.</i>) | To Be Considered | Provides a method for calculating PCB concentration in fish flesh for the protection of wildlife. The final fish flesh criterion is 0.11 mg/kg PCBs wet wt | | SEDIMENT | | | | | EPA Office of
Emergency and
Remedial Response | Guidance on Remedial Actions for
Superfund Sites with PCB
Contamination, EPA/540/G-
90/007, August 1990 (OSWER Dir.
No. 9355.4-01). | To Be Considered | Provides guidance in the investigation and remedy selection process for PCB-contaminated Superfund sites. Provides preliminary remediation goals for various contaminated media, including sediment (pp. 34-36) and identifies other considerations important to protection of human health and the environment. | # Table 2-1b # **Chemical-Specific** # Criteria, Advisories and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |--|---|------------------|---| | NOAA - Damage
Assessment Office | Development and Evaluation of
Consensus-Based Sediment
Effect Concentrations for PCBs in
the Hudson River, MacDonald
Environmental Services Ltd.,
March 1999 | To Be Considered | Estuarine, freshwater and saltwater sediment effects concentrations for total PCBs: Threshold Effect Concentration: 0.04 mg/kg Mid-range Effect Concentration: 0.4 mg/kg Extreme Effect Concentration: 1.7 mg/kg | | NOAA | Screening Quick Reference Tables for Organics (SQRTs) | To Be Considered | PCB concentrations in freshwater sediment (dry weight basis): Lowest ARCS <i>H. azteca</i> TEL is 31.6 ppb Threshold Effects Level (TEL) is 34.1 ppb Probable Effects Level (PEL) is 277 ppb Upper Effects Threshold (UET) is 26 ppb (Microtox bioassay). | | EPA Great Lakes National Program Office, Assessment and Remediation of Contaminated Sediments (ARCS) Program | Calculation and Evaluation of
Sediment Effect Concentrations
for the Amphipod <i>Hyalella</i>
azteca and the midge
Chironomus riparius, EPA 905-
R96-008, September 1996 | To Be Considered |
Provides sediment effects concentrations (SECs), which are defined as the concentrations of a contaminant in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. Freshwater: Threshold Effect Level is 32 ng/g total PCBs Probable Effect Level is 240 ng/g total PCBs No Effect Concentration is 190 ng/g total PCBs | | NYSDEC Division of
Fish, Wildlife and
Marine Resources | Technical Guidance for Screening
Contaminated Sediment, January
1999 | To Be Considered | Includes a methodology to establish sediment criteria for the purpose of identifying contaminated sediments. Provides sediment quality screening values for non-polar organic compounds, such as PCBs, and metals to determine whether sediments are contaminated (above screening criteria) or clean (below screening criteria). Screening values are not cleanup goals. Also discusses the use of sediment criteria in risk management decisions. | # Table 2-2a # **Location-Specific** | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|---------------------------|--------|---| | Section 404 of the
Clean Water Act
[Federal Water
Pollution Control Act,
as amended], 33 U.S.C.
§ 1344 | 33 CFR Parts 320-329 | ARAR | Includes requirements for issuing permits for the discharge of dredged or fill material into navigable waters of the United States. A permit is required for construction of any structure in a navigable water. | | Clean Water Act
Section 404, 33 U.S.C. §
1344 | 40 CFR Part 230 | ARAR | No activity which adversely affects an aquatic ecosystem, including wetlands, shall be permitted if a practicable alternative that has less adverse impact is available. If there is no other practical alternative, impacts must be minimized. | | Toxic Substances
Control Act (TSCA),
Title I, 15 U.S.C.
§ 2601 | 40 CFR §§ 761.65 - 761.75 | ARAR | TSCA facility requirements: Establishes siting guidance and criteria for storage (761.65), chemical waste landfills (761.75), and incinerators (761.70). | | Statement of Procedures on Floodplain Management and Wetlands Protection | 40 CFR Part 6, Appendix A | ARAR | Sets forth EPA policy and guidance for carrying out Executive Orders 11990 and 11988. Executive Order 11988: Floodplain Management requires federal agencies to evaluate the potential effects of actions they may take in a floodplain to avoid, to the extent possible, adverse effects associated with direct and indirect development of a floodplain. Federal agencies are required to avoid adverse impacts or minimize them if no practicable alternative exists. Executive Order 11990: Protection of Wetlands requires federal agencies conducting certain activities to avoid, to the extent possible, the adverse impacts associated with the destruction or loss of wetlands if a practicable alternative exists. Federal agencies are required to avoid adverse impacts or minimize them if no practicable alternative exists. | # Table 2-2a Location-Specific | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |--|---|--------|---| | Endangered Species
Act of 1973, as
amended, 16 U.S.C.
§§ 1531- 1544 | 50 CFR Part 17, Subpart I;
50 CFR Part 402 | ARAR | Federal agencies are required to verify that any action authorized, funded, or carried out by them is not likely to jeopardize the continued existence of any endangered species or threatened species, or result in the destruction or adverse modification of a critical habitat of such species, unless such agency has been granted an appropriate exemption by the Endangered Species Committee (16 U.S.C. § 1536). No federally-listed or proposed threatened or endangered species are known to exist in the Upper Hudson River. However, the shortnose sturgeon (<i>Acipenser brevirostrum</i>) is found in the Lower Hudson River south of the Federal Dam at Troy. Further consultation with the National Marine Fisheries Service may be necessary to determine the need for any additional consideration under the ESA. | | Fish and Wildlife
Coordination Act, 16
U.S.C. § 662 | N/A | ARAR | Whenever the waters of any stream or other body of water are proposed or authorized to be impounded, diverted, the channel deepened, or the stream or other body of water otherwise controlled or modified for any purpose, by any department or agency of the United States, such department or agency first shall consult with the United States Fish and Wildlife Service, Department of the Interior, and with the head of the agency exercising administration over the wildlife resources of the particular State in which the impoundment, diversion, or other control facility is to be constructed, with a view to the conservation of wildlife resources by preventing loss of and damage to such resources. | | Farmland Protection
Policy Act of 1981, 7
U.S.C. § 4201. | 7 CFR Part 658 | ARAR | Regulates the extent to which federal programs contribute to the unnecessary and irreversible conversion of farmland to non-agricultural uses. | # Table 2-2a Location-Specific | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |--|------------------------|--------|---| | National Historic
Preservation Act,
16 U.S.C. § 470 et seq. | 36 CFR Part 800 | ARAR | Proposed remedial actions must take into account effect on properties in or eligible for inclusion in the National Registry of Historic Places. Federal agencies undertaking a project having an effect on a listed or eligible property must provide the Advisory Council on Historic Preservation a reasonable opportunity to comment pursuant to section 106 of the National Historic Preservation Act of 1966, as amended. While the Advisory Council comments must be taken into account and integrated into the decision-making process, program decisions rest with the agency implementing the undertaking. A Stage 1A cultural resource survey is expected to be necessary for any active remediation to identify historic properties along the river banks and to determine if any areas should be the subject of further consideration under NHPA. | | New York State Freshwater Wetlands Law, Environmental Conservation Law (ECL) Article 24, Title 7 | 6 NYCRR Parts 662- 665 | ARAR | Defines procedural requirements for undertaking different activities in and adjacent to freshwater wetlands, and establishes standards governing the issuance of permits to alter or fill freshwater wetlands. | | New York State ECL
Article 3, Title 3; Article
27, Titles 7 and 9 | 6 NYCRR § 373-2.2 | ARAR | Establishes construction requirements for hazardous waste facilities in 100-year floodplain. | | New York State ECL
Article 11, Title 5 | 6 NYCRR Part 182 | ARAR | The taking of any endangered or threatened species is prohibited, except under a permit or license issued by NYSDEC. The destroying or degrading the habitat of a protected animal likely constitutes a "taking" of that animal under NY ECL § 11-0535. | # Table 2-2b # **Location-Specific** # Criteria, Advisories and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | REQUIREMENT | STATUS | REQUIREMENT SYNOPSIS |
--|--|---------------------|---| | EPA Office of Solid
Waste and Emergency
Response | Policy on Floodplains and
Wetland Assessments for
CERCLA Actions, August
1985 | To Be
Considered | Superfund actions must meet the substantive requirements of the Floodplain Management Executive Order (E.O. 11988) and the Protection of Wetlands Executive Order (E.O. 11990) (see Table 2-2A: Location-Specific ARARs). This memorandum discusses situations that require preparation of a floodplains or wetlands assessment, and the factors that should be considered in preparing an assessment, for response actions taken pursuant to Section 104 or 106 of CERCLA. For remedial actions, a floodplain/wetlands assessment must be incorporated into the analysis conducted during the planning of the remedial action. | | No Other Location-Speci | fic To-Be-Considered Criteria Ider | ntified. | | | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|-----------------|--------|---| | Toxic Substances
Control Act (TSCA),
Title I, 15 U.S.C.
§ 2605 | 40 CFR § 761.50 | ARAR | Identifies disposal requirements for various PCB waste types. | | TSCA, 15 U.S.C.
§ 2605 | 40 CFR § 761.61 | ARAR | Cleanup and disposal options for PCB remediation waste, which includes PCB-contaminated sediments and dredged materials. Disposal options for PCB remediation waste include disposal in a high-temperature incinerator, an approved chemical waste landfill, or a facility with a coordinated approval under 40 CFR § 761.77. PCB remediation waste containing PCBs at concentrations less than 50 ppm may be disposed of off-site in an approved land disposal facility for the management of municipal solid waste, or in a disposal facility approved under 40 CFR part 761. 40 CFR § 761.61(c) allows an EPA Regional Administrator to approve a risk-based disposal method that will not pose an unreasonable risk of injury to human health or the environment. | | TSCA, 15 U.S.C.
§ 2605 | 40 CFR § 761.65 | ARAR | Storage requirements: Establishes technical requirements for temporary storage of PCB wastes prior to treatment or disposal. | | TSCA, 15 U.S.C.
§ 2605 | 40 CFR § 761.70 | ARAR | Incineration requirements: Establishes requirements for thermal destruction of PCBs in incinerators (boilers are not permitted for non-liquid PCBs, including dredged material). | | TSCA, 15 U.S.C.
§ 2605 | 40 CFR § 761.75 | ARAR | Chemical Waste Landfill Requirements:
Establishes approval and technical requirements
for land disposal (landfilling) of PCBs. | | TSCA, 15 U.S.C.
§ 2605 | 40 CFR § 761.79 | ARAR | Decontamination standards and procedures for removing PCBs that are regulated for disposal from water, organic liquids, and other materials. | | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|--|--------|---| | Section 3004 of the
Resource
Conservation and
Recovery Act [Solid
Waste Disposal Act,
as amended], 42 U.S.C.
§ 6924 | 40 CFR § 264.13(b)(8) | ARAR | Owner or operator of a facility that treats, stores or disposes of hazardous wastes must develop and follow a written waste analysis plan. | | Section 3004 of the
Resource
Conservation and
Recovery Act, as
amended, 42 U.S.C.
§ 6924 | 40 CFR § 264.232 | ARAR | Owners and operators shall manage all hazardous waste placed in a surface impoundments in accordance with 40 CFR Subparts BB (Air Emission Standards for Equipment Leaks) and CC (Air Emission Standards for Tanks, Surface Impoundments and Containers). | | Section 404(b) of the
Clean Water Act, 33
U.S.C. § 1344(b) | 40 CFR Part 230 | ARAR | Guidelines for Specification of Disposal Sites for Dredged or Fill Material. Except as otherwise provided under Clean Water Act Section 404(b)(2), no discharge of dredged or fill material shall be permitted if there is a practicable alternative to the proposed discharge which would have less adverse impact on the aquatic ecosystem, so long as the alternative does not have other significant adverse environmental consequences. Includes criteria for evaluating whether a particular discharge site may be specified. | | Section 404(c) of the
Clean Water Act, 33
U.S.C. § 1344(c) | 40 CFR Part 231, 33 CFR
Parts 320, 323, and 325 | ARAR | These regulations apply to all existing, proposed, or potential disposal sites for discharges of dredged or fill materials into U.S. waters, which include wetlands. Includes special policies, practices, and procedures to be followed by the U.S. Army Corps of Engineers in connection with the review of applications for permits to authorize the discharge of dredged or fill material into waters of the United States pursuant to Section 404 of the Clean Water Act. | | Section 10, Rivers and
Harbors Act, 33 U.S.C.
§ 403 | 33 CFR Part 322 | ARAR | U.S. Army Corps of Engineers approval is generally required to excavate or fill, or in any manner to alter or modify the course, location, condition, or capacity of the channel of any navigable water of the United States. | | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |--|--|--------|---| | Hazardous Materials
Transportation Act, as
amended , 49 U.S.C.
§§ 5101 - 5127 | 49 CFR Part 171 | ARAR | Department of Transportation Rules for
Transportation of Hazardous Materials, including
procedures for the packaging, labeling,
manifesting and transporting of hazardous
materials. | | New York State ECL
Article 27, Title 7 | 6 NYCRR Part 360
Solid Waste Management
Facilities | ARAR | New York State regulations for design, construction, operation, and closure requirements for solid waste management facilities. | | New York State ECL
Article 27, Title 11 | 6 NYCRR Part 361
Siting of Industrial
Hazardous Waste Facilities | ARAR | Establishes criteria for siting industrial hazardous waste treatment, storage and disposal facilities. Regulates the siting of new industrial hazardous waste facilities located wholly or partially within New York State. Identifies criteria by which the facilities siting board will determine whether to approve a proposed industrial hazardous waste facility. | | New York State ECL
Article 27, Title 3 | 6 NYCRR Part 364
Standards for Waste
Transportation | ARAR | Regulations governing the collection, transport and delivery of regulated wastes, including hazardous wastes. | | New York State ECL
Article 27, Title 9 | 6 NYCRR Parts 370 and 371,
Standards for Hazardous
Waste Management | ARAR | New York State regulations for activities associated with hazardous waste management. All dredged materials and other solid wastes containing 50 ppm by weight (on a dry weight basis for other than liquid wastes) or greater of PCBs are listed hazardous wastes, excluding small capacitors and PCB articles drained in accordance with applicable NY State regulations. | | New York State ECL
Article 3, Title 3;
Article 27, Titles 7 and
9 | 6 NYCRR Part 372
Hazardous Waste Manifest
System and Related
Standards for Generators,
Transporters and Facilities | ARAR | Includes Hazardous Waste Manifest System
requirements for generators, transporters, and treatment, storage or disposal facilities, and other requirements applicable to generators and transporters of hazardous waste. | | New York State ECL
Article 3, Title 3;
Article 27, Titles 7 and
9 | 6 NYCRR Part 373
Hazardous Waste
Management Facilities | ARAR | These regulations establish requirements for treatment, storage, and disposal of hazardous waste; permit requirements; and construction and operation standards for hazardous waste management facilities. | | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|--|--------|---| | New York State ECL
Article 27, Title 13
Hazardous Waste Site
Remediation Projects | 6 NYCRR Part 375
Inactive Hazardous Waste
Disposal Sites | ARAR | Establishes standards for the development and implementation of inactive hazardous waste disposal site remedial programs. | | New York State ECL
Article 27, Title 9 | 6 NYCRR Part 376 | ARAR | Land Disposal Restrictions. PCB wastes including dredge spoils containing PCBs greater than 50 ppm must be disposed of in accordance with federal regulations at 40 CFR Part 761. | | New York State ECL,
Article 19, Title 3 - Air
Pollution Control Law.
Promulgated pursuant
to the Federal Clean
Air Act, 42 USC §
7401 | 6 NYCRR Parts 200, 202,
205, 211, 212, 219, and 257.
Air Pollution Control
Regulations | ARAR | The emissions of air contaminants that jeopardize human, plant, or animal life, or is ruinous to property, or causes a level of discomfort is strictly prohibited. | | New York State ECL
Article 15, Title 5, and
Article 17, Title 3 | 6 NYCRR Part 608
Use and Protection of
Waters | ARAR | A permit is required to change, modify, or disturb any protected stream, its bed or banks, or remove from its bed or banks sand or gravel or any other material; or to excavate or place fill in any of the navigable waters of the state. Any applicant for a federal license or permit to conduct any activity which may result in any discharge into navigable waters must obtain a State Water Quality Certification under Section 401 of the Federal Water Pollution Control Act, 33 USC § 1341. | | New York State ECL
Article 17, Title 8 | 6 NYCRR Parts 750 - 758
New York State Pollutant
Discharge Elimination
System (SPDES)
Requirements | ARAR | Standards for Storm Water Runoff, Surface Water, and Groundwater Discharges. In general, no person shall discharge or cause a discharge to NY State waters of any pollutant without a permit under the New York State Pollutant Discharge Elimination System (SPDES) program. | | New York State ECL
Article 17, Title 5 | N/A | ARAR | It shall be unlawful for any person, directly or indirectly, to throw, drain, run or otherwise discharge into such waters organic or inorganic matter that shall cause or contribute to a condition in contravention of applicable standards identified at 6 NYCRR § 701.1. | | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |---|------------------|--------|--| | New York State ECL
Article 11, Title 5 | NY ECL § 11-0503 | ARAR | Fish & Wildlife Law against water pollution. No deleterious or poisonous substances shall be thrown or allowed to run into any public or private waters in quantities injurious to fish life, protected wildlife or waterfowl inhabiting those waters, or injurious to the propagation of fish, protected wildlife or waterfowl therein. | # Criteria, Advisories, and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |----------------------|--|------------------|---| | USEPA | Covers for Uncontrolled
Hazardous Waste Sites
(EPA/540/2-85-002; September
1985) | To Be Considered | Covers for Uncontrolled Hazardous Waste
Sites should include a vegetated top cover,
middle drainage layer, and low permeability
layer. | | USEPA | Rules of Thumb for Superfund
Remedy Selection (EPA 540-R-
97-013, August 1997) | To Be Considered | Describes key principles and expectations, as well as "best practices" based on program experience, for the remedy selection process under Superfund. Major policy areas covered are risk assessment and risk management, developing remedial alternatives, and groundwater response actions. | | USEPA | Land Use in the CERCLA
Remedy Selection Process
(OSWER Directive No. 9355.7-
04, May 1995) | To Be Considered | Presents information for considering land use in making remedy selection decisions at NPL sites. | | USEPA | Contaminated Sediment
Strategy (EPA-823-R-98-001,
April 1998) | To Be Considered | Establishes an Agency-wide strategy for contaminated sediments, with the following four goals: 1) prevent the volume of contaminated sediments from increasing; 2) reduce the volume of existing contaminated sediment; 3) ensure that sediment dredging and dredged material disposal are managed in an environmentally sound manner; and 4) develop scientifically sound sediment management tools for use in pollution prevention, source control, remediation, and dredged material management. The strategy includes the Hudson River in its case studies of human health risks. | | USEPA | Structure and Components of Five-Year Reviews (OSWER Directive 9355.7-02, May 1991) Supplemental Five-Year Review Guidance (OSWER Directive 9355.7-02A, July 1994) Second Supplemental Five-Year Review Guidance (OSWER 9355.7-03A, December 1995) | To Be Considered | Provides guidance on conducting Five-Year Reviews for sites at which hazardous substances, pollutants, or contaminants remain on-site above levels that allow for unrestricted use and unlimited exposure. The purpose of the Five-Year Review is to evaluate whether the selected response action continues to be protective of public health and the environment and is functioning as designed. | # Criteria, Advisories, and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |----------------------|---|------------------|--| | NYSDEC | Air Guide 1 - Guidelines for
the Control of Toxic Ambient
Air Contaminants, 2000 | To Be Considered | Provides guidance for the control of toxic ambient air contaminants in New York State. Current annual guideline concentrations (AGCs) for PCBs are $0.01~\mu g/m^3$ for inhalation of evaporative congeners (Aroclor 1242 and below) and $0.002~\mu g/m^3$ for inhalation of persistent highly chlorinated congeners (Aroclor 1248 and above) in the form of dust or aerosols. | | NYSDEC | Technical and Operational
Guidance Series (TOGS) 1.1.1
Ambient Water Quality
Standards and Guidance
Values | To Be Considered | Provides guidance for ambient water quality standards and guidance values for pollutants. | | NYSDEC | Technical and Operational
Guidance Series (TOGS) 1.2.1
Industrial SPDES Permit
Drafting Strategy for Surface
Waters | To Be Considered | Provides guidance for writing permits for discharges of wastewater from industrial facilities and for writing requirements equivalent to SPDES permits for discharges from remediation sites. | | NYSDEC | Technical and Operational
Guidance Series (TOGS) 1.3.1
Waste Assimilative Capacity
Analysis & Allocation for
Setting Water Quality Based
Effluent Limits | To Be Considered | Provides guidance to water quality control engineers in determining whether discharges to waterbodies have a
reasonable potential to violate water quality standards and guidance values. | | NYSDEC | Technical and Operational
Guidance Series (TOGS) 1.3.2
Toxicity Testing in the SPDES
Permit Program | To Be Considered | Describes the criteria for deciding when toxicity testing will be required in a permit and the procedures which should be followed when including toxicity testing requirements in a permit. | | NYSDEC | Technical and Operational
Guidance Series (TOGS) 1.3.7
Analytical Detectability &
Quantitation Guidelines for
Selected Environmental
Parameters | To Be Considered | Provides method detection limits and practical quantitation limits for pollutants in distilled water. | # Criteria, Advisories, and Guidance to be Considered (TBCs) Hudson River PCBs Reassessment RI/FS | MEDIUM/
AUTHORITY | CITATION | STATUS | REQUIREMENT SYNOPSIS | |--|---|------------------|---| | NYSDEC | Technical and Administrative Guidance Memorandum (TAGM) 4031 Fugitive Dust Suppression and Particulate Monitoring Program at Inactive Hazardous Waste Sites | To Be Considered | Provides guidance on fugitive dust suppression and particulate monitoring for inactive hazardous waste sites. | | NYSDEC | Interim Guidance on
Freshwater Navigational
Dredging, October 1994 | To Be Considered | Provides guidance for navigational dredging activities in freshwater areas. | | NYSDEC Division of
Fish, Wildlife and
Marine Resources | Fish and Wildlife Impact
Analysis for Inactive
Hazardous Waste Sites
(FWIA), October 1994 | To Be Considered | Provides rationale and methods for sampling and evaluating impacts of a site on fish and wildlife during the remedial investigation and other stages of the remedial process. | # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 3 - 3-1 Data Source Used in the Selection of Areas for Remediation - 3-2 Upper Hudson Data Sets and Their Application - 3-3 Theoretical Limits of Impact of Various Remediation Criteria on PCB Mass and Sediment Area in TI Pool - 3-4 Summary of Targeted Contamination Table 3-1 Data Sources Used in the Selection of Areas for Remediation | | | | Areas | | Cov | verages | | Me | trics Ca | lculated | | | |--|------------------------------|-----------------------------|-----------------------------|--------------------|------|---------|------------|--------------------|---------------|-------------|-----|--| | Data Source | Data Type | Areas Studied (Section No.) | Where Applied (Section No.) | "Surface"
Cores | Full | Grab | Composites | "Surface" | Max.
Conc. | LWA | MPA | Notes | | IN 1 SDEC 1970-
1978 Upper
Hudson Survey | Sediment
PCB Levels | 1, 2, 3 | 2, 3 | 43 | 232 | 555 | | Y (0-10 cm) | Y | Y
(30cm) | | Density estimated for some MPA values.
Core depths limited to 30cm. | | NYSDEC 1984
TI Pool Survey | Sediment
PCB Levels | 1 | 1 | | 407 | 730 | | Y (0-30 cm) | Y | Y | | Grab depths extrapolated to 12 to 16 inches based on sediment texture. Density Measured. | | General Electric
1991 Sediment
Composite
USEPA 1992 | Sediment PCB Levels Sediment | 1, 2, 3 | 1, 2, 3 | | | | 132 | Y (0-5 cm) | | | | Composites at 0-3, 5-10 and 10-25 cm. Composites cover long distances and cross river. Defined fine-grained (cohesive) and coarse- | | Side-Scan Sonar | Properties | 1, 2 | 1, 2 | | | | | | | | | grained (noncohesive) areas. | | USEPA 1992
Bathymetric | Water depth | 1, 2 | 1, 2 | | | | | | | | | | | Low Resolution Core Study | Sediment
PCB Levels | 1, 2, 3 | 1, 2, 3 | | 170 | | | Y (0-23 cm) | Y | Y | | Selected areas in 11 Pool. Hot Spots 25, 28, 31, 34, 35, 37 & 39. Core depth confirmation by Cs 137. MPA used measured density. | | General Electric
1998 Sediment
Composites | PCB "Surface" Concentration | 1 | 1 | | | | 30 | Y (0-5 cm) | | | | Composites at 0-2 and 2-5 cm. Composites cover long distances. | | General Electric
1998-1999
Sediment Cores | Sediment
PCB Levels | 1, 2 | 1, 2 | 20 (15 cm) | | 4 | | Y (0-5,
0–15cm) | | | | Twenty cores at hot spots 14 and 16. Four high resolution cores | Table 3-2 Upper Hudson Data Sets and Their Application | | | | Supplementary | | |----------------------|----------------------------|-------------------------|-------------------|----------------------------| | River Section | Main PCB Data Set | Metric | PCB Data Sets | Additional Data | | 1 | NYSDEC 1984 | "Surface" Concentration | GE 1991 | USEPA 1992 Bathymetry | | RM 194.5 | | MPA | USEPA 1994 | USEPA 1992 Side Scan Sonar | | to 188.5 | | LWA | GE 1998 | | | | | Maximum Concentration | | | | 2 | USEPA 1994 | "Surface" Concentration | GE 1991 | USEPA 1992 Bathymetry | | RM 188.5 | (<i>Hot Spots</i> 25, 28, | MPA | GE 1998 | USEPA 1992 Side Scan Sonai | | to 183 | 31, 34 and 35) | LWA | | | | | | Maximum Concentration | | | | | I
NYSDEC 1976-1978 | "Surface" Concentration | | | | | (all other areas) | MPA | | | | | | LWA | | | | 3 | USEPA 1994 | "Surface" Concentration | GE 1991 | | | RM 183 | Hot Spots 37 and 39 | | | | | to 156 | , | LWA | | | | | | Maximum Concentration | | | | | l
NYSDEC 1976-1978 | "Surface" Concentration | | | | | (all other areas) | MPA | | | | | | LWA | | | | | | | | | Table 3-3 Theoretical Limits of Impact of Various MPA Remediation Criteria on PCB Mass and Sediment Area in TI Pool PCB Mass (kg) | Threshold | All Sediments | | Cohesive | Sediments | Non-cohesive Sediments | | |-----------|---------------|------------|------------|-------------------------|------------------------|-------------------------| | | Mass | Percent | Mass | Percent | Mass | Percent | | | Remediated | Remediated | Remediated | Remediated ¹ | Remediated | Remediated ² | | 0 g/m2 | 15,400 | 100% | 8,800 | 100% | 6,800 | 100% | | 3 g/m2 | 14,200 | 92% | 8,500 | 97% | 5,700 | 84% | | 10 g/m2 | 10,200 | 66% | 7,800 | 89% | 2,500 | 37% | ## Area (acre) | Threshold | All Sediments | | Cohesive | Sediments | Non-cohesive Sediments | | |-----------|---------------|----------|------------|-----------------------|------------------------|-----------------------| | | Area | Percent | Area | Percent | Area | Percent | | | Remediated | Affected | Remediated | Affected ¹ | Remediated | Affected ² | | 0 g/m2 | 506 | 100% | 146 | 100% | 360 | 100% | | 3 g/m2 | 232 | 46% | 88 | 60% | 144 | 40% | | 10 g/m2 | 85 | 17% | 54 | 37% | 32 | 9% | ### Note: - 1. Percent represents fraction of cohesive sediment area or mass. - 2. Percent represents fraction of non-cohesive area or mass. Table 3-4 Summary of Targeted Contamination | | | Remediation Scale | | No Action/ | |---|------------------|-------------------|-----------|------------| | | Full-Section | Expanded Hot Spot | Hot Spot | MNA | | Targeted Sediment Volume (cy) | | | | | | River Section 1 | 2,030,000 | 1,516,000 | 965,000 | 0 | | River Section 2 | 1,105,000 | 723,000 | 538,000 | 0 | | River Section 3 | NA (Note 1) | 571,000 | 431,000 | 0 | | Overall - Upper Hudson (total River Sections 1, 2, and 3) | 3,135,000 | 2,239,000 | 1,934,000 | 0 | | Sediment Remediation Areas (acres) | | | | | | River Section 1 - Total Area (all sediments) | 534 | 534 | 534 | 534 | | Total Area Selected (acres) | 470 | 270 | 150 | 0 | | Percent Selected | 88% | 51% | 28% | 0% | | River Section 2 - Total Area (all sediments) | 488 | 488 | 488 | 488 | | Total Area Selected (acres) | 316 | 115 | 74 | 0 | | Percent Selected | 65% | 24% | 15% | 0% | | River Section 3 - Total Area (all sediments) | 2,880 | 2,880 | 2,880 | 2,880 | | Total Area Selected (acres) | NA (Note 1) | 134 | 97 | 0 | | Percent Selected | NA (Note 1) | 5% | 3% | 0% | | Contaminant (PCB) Mass (kg) | | | | | | River Section 1 - Total PCBs in Section (Note 2) | 15,400 | 15,400 | 15,400 | 15,400 | | Total PCBs (kg) above MPA in Section | 15,000 | 11,600 | 8,600 | 0 | | Percent exceeding MPA criterion in Section | 97% | 75% | 56% | 0% | | River Section 2 (Note 3) | | | | | | Total PCBs (kg) above MPA in Section | >35,000 (Note 4) | 31,200 | 23,600 | 0 | | Percent exceeding MPA criterion in Section | NA | NA | NA | NA | | River Section 3 (Note 3) | | | | | | Total PCBs (kg) above MPA in Section | NA | 10,700 | 6,700 | 0 | | Percent exceeding MPA criterion in Section | NA | NA | NA | NA | | Overall - Upper Hudson | | | | | | Total PCBs above MPA Criterion | NA (Note 1) | 53,500 | 38,900 | 0 | #### Notes: - 1 No full-section remediation is anticipated in River Section 3. - 2 PCB mass in River Section 1 estimated using 1984 data - 3 PCB mass in River Sections 2 and 3 estimated using 1994 data; only *hot spots* were sampled. Total mass of PCBs in Sections 2 and 3 cannot be estimated accurately from 1994 data; therefore % removal cannot be calculated. - 4 This estimate combines the 1994 data for areas >3g/m² with the 1977 data for areas <3g/m². Because of the uncertainties associated with the 1977 data, (*i.e.*, shallow coring depths and potential sediment inventory changes), one half of the mass estimated from the 1977 data (3.65 of 7.3 metric tons) was used as a part of the lower bound estimate given here. # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 4 | 4-1 | Initial Technology Evaluation and Screening | |------
--| | 4-2 | List of Process Options for Capping | | 4-3 | List of Process Options for Bioremediation | | 4-4 | List of Process Options for Solvent Extraction Technologies | | 4-5 | List of Process Options for Chemical Dechlorination | | 4-6 | List of Process Options for Solidification/Stabilization | | 4-7 | List of Dredging Technology Options | | 4-8 | List of Suspended Sediment Containment Technology Options During Sediment | | | Removal | | 4-9 | List of Process Options for Sediment Washing | | 4-10 | List of Process Options for Thermal Desorption | | 4-11 | List of Process Options for Thermal Destruction | | 4-12 | List of Process Options for Beneficial Use | | 4-13 | List of Process Options for Thermal Destruction/Beneficial Use | | 4-14 | List of Disposal Facilities, Non-TSCA-Permitted Landfills | | 4-15 | List of Disposal (Off-site) Facilities, TSCA-Permitted Landfills | | 4-16 | Effectiveness, Implementability, and Cost Evaluation - Screening of Technologies | Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |---|---|---|----------| | No Action | No Action involves deferral of remedial action. Institutional controls are not implemented as part of No Action option. | No Action alternative retained to provide baseline for analysis as required under NCP. | Yes | | Institutional Controls | Institutional controls include monitoring and site use restrictions. Institutional controls can be implemented as part of natural attenuation option, or an alternative with active remediation. | Monitoring is effective for evaluating concentrations and effects of PCBs in the river in the long term. Site use restrictions, if completely complied with, are effective in controlling use of and/or disturbance to sediments, water, or fish contaminated with PCBs. | Yes | | Natural Attenuation | Natural attenuation refers to the reduction of volume and toxicity of contaminants in sediments by naturally occurring biological, chemical, or physical processes. Extensive site monitoring and modeling are conducted to document contaminant reduction. | Natural attenuation processes may be effective in areas where natural attenuation processes have been observed, and where there are no adverse impacts on potential human or ecological receptors. | Yes | | Containment | | | | | Subaqueous Capping | Capping involves using inert material, active material, or sealing agents to contain sediments <i>in situ</i> . Besides capping materials, other considerations for <i>in situ</i> capping include cap thickness, cap placement techniques, cap armoring, and monitoring. | A properly designed cap can be effective in minimizing diffusion, bioturbation, and erosive transport of contaminant in sediments. | Yes | | Retaining Dikes/Berms | Retaining dikes and berms include permanent subaqueous or full-depth embankments, bulkheads, sheet piling, and spur dikes constructed either perpendicular to stream flow or parallel to the shore to control downstream transport of contaminated sediments. | Properly designed and constructed dikes can be effective in trapping and increasing deposition of sediments suspended in water column. Dikes and berms constructed parallel to shoreline can be used to isolate contaminated sediments left in place in depositional areas from the river flow. | Yes | Page 1 of 6 TAMS Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |---|--|---|----------| | In Situ Treatment | | | | | Bioremediation | Bioremediation involves manipulation of physical, chemical, and biological conditions in the contaminated sediments to accelerate biodegradation of contaminants. <i>In situ</i> bioremediation may include addition and mixing of microbes and/or nutrients to sediments to enhance biodegradation. | Results from an in situ bioremediation field study at the site indicate that complete biodegradation of PCBs may be difficult to achieve within a reasonable time frame. In addition, this technology has several implementability limitations, including: difficulty in addition and effective distribution of microbes and/or nutrients, and problems in monitoring and controlling biodegradation process during treatment. | No | | Solvent Extraction | This technology involves injection of a solvent to extract contaminants from sediment matrix <i>in situ</i> , and recovering the contaminant-bearing spent solvent for treatment or destruction <i>ex situ</i> . Containment structures to control migration of the solvent may be required during extraction. | This technology has several implementability limitations, including: difficulty in solvent application and effective distribution to all sediments to be treated, problems in monitoring of extraction effectiveness, and difficulty in complete recovery of solvent after treatment. | No | | Chemical Dechlorination | Dechlorination is a process where chlorine molecules are removed from chlorinated compounds through the addition of a chemical reagent under alkaline conditions. This technology involves injection and mixing of reagents to the sediments <i>in situ</i> to achieve dechlorination. Dechlorination can be combined with immobilization (described below) to treat PCBs in sediments. | This technology has several implementability limitations, including: difficulty in reagents application and effective distribution to all sediments to be treated and problems in monitoring of extraction effectiveness. Unlike solvent extraction, recovery of the reagents may not be required because the reaction of the reagents with PCBs produces glycol ether and a chloride salt which are water soluble and of low toxicity. | No | | Immobilization | Immobilization includes processes that physically or chemical reduce mobility of contaminants. Immobilization includes solidification, stabilization, and encapsulation processes. Solidification involves addition of reagents to a contaminated matrix to produce a solid block; stabilization involves conversion of contaminated material to a more chemically stable form; encapsulation involves enclosure of contaminant particle with an additive or binder. <i>In situ</i> immobilization involves mixing setting agents such as cement, quicklime, grout, as well as reagents, with sediments in place to solidify or fix contaminants in the matrix. Solidification has been combined with dechlorination (described above) to treat PCBs in sediments. | This technology has several limitations including: difficulty in setting agents and reagents application and effective distribution to all sediments to be treated, volume increase of river bed, release of reagents to water column during mixing, solidified mass interference with future dredging activities and with habitat re-establishment. | No | Page 2 of 6 TAMS Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |---|---|--|----------| | Removal | | | | | Excavation | Excavation methods would apply to sediment removal from shallow, near shore areas where the work zone can be isolated and dewatered. | Excavation can be an
effective way to remove contaminated sediments from areas that are inaccessible to dredges. Excavation may be difficult to implement due to lack of access to the river from the land side. | Yes | | Dredging | Environmental dredging involves removal of contaminated sediments in a way that minimizes release of sediments and contaminants to the aquatic environment. Dredge types evaluated are classified as conventional, large-scale, and specialty. Conventional dredges include mechanical dredges, which remove sediments by direct mechanical means; and hydraulic dredges, which collect sediments mixed with water in a slurry using centrifugal pumps. Large scale dredges are primarily used for navigational dredging. Specialty dredges are designed to address specific project needs. | Environmental dredging can be an effective method to remove contaminated sediments from the river. | Yes | | Soil Freezing | Containment cells are placed in the sediment, and refrigerant is circulated within the contained cell of sediments. When the sediment is sufficiently frozen, the entire cell can be removed with minimal sediment resuspension. Once the cells are retrieved, the sediment is dewatered and ready for further treatment or disposal. | Soil freezing would likely be costly, provide relatively low removal rates, and apply only to areas where hydrodynamic conditions would permit freezing to occur. Practical application of this technology is likely very difficult. | No | | Ex Situ Treatment | | | | | Bioremediation | Bioremediation involves manipulation of physical, chemical, and biological conditions in the contaminated sediments to accelerate biodegradation of contaminants. <i>Ex situ</i> bioremediation approaches evaluated include a slurry phase bioreactor and a land-based approach which includes land farming and composting. | Bioremediation results from pilot scale tests conducted at other sites indicate that complete biodegradation of PCBs may be difficult to achieve within a reasonable time frame for the anticipated volume of dredged sediments. | No | Page 3 of 6 TAMS Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |---|--|---|----------| | Sediment Washing | Sediment washing is a water-based treatment process which extracts contaminants from sediments as well as separates fine fraction of sediments from coarser particles, thereby concentrating the contaminants and reducing volume of material requiring additional treatment or disposal. Soil/ sediment washing solutions can include solvents, chelating compounds, surfactants, acids/bases in addition to water, depending on the type of contaminant being extracted. | Sediment washing can be effective in removing PCBs from sediments as wells as reducing volume of material requiring additional treatment or disposal if the appropriate reagents and mechanical washing processes are used. | Yes | | Solvent Extraction | This technology involves dissolution of contaminants from the sediment matrix using a solvent, recovery and treatment or destruction of the contaminant-bearing solvent. The most common solvents used for PCB extraction are kerosene, propane, methanol, ethanol, dimethylformamide, ethylenediamine, triethylamine, and freon mixtures. | Solvent extraction can be very effective in removing PCBs from sediments if the appropriate solvent is used. | Yes | | Chemical Dechlorination | Chemical dechlorination involves removal of chlorine molecules from chlorinated compounds through the addition of a chemical reagent under alkaline conditions. Two types of dechlorination processes are evaluated: APEG and base-catalyzed decomposition. Dechlorination is often used in combination with thermal desorption (described below). Dechlorination has also been used with solidification (described below). | APEG process often results in partial dechlorination, with residual compounds that are water soluble and slightly toxic; this process can also sometimes form dioxins and furans. Base-catalyzed decomposition is effective in treating PCBs without forming dioxins, furans, or other toxic by-products. Combined thermal desorption/dechlorination processes can be more effective than thermal desorption or dechlorination alone. Combined dechlorination/solidification has not been demonstrated beyond bench scale for treating PCBs in sediments. | Yes | | Thermal Desorption | Thermal desorption involves heating sediments to below combustion temperatures (200° F to 1000° F) to volatilize organic contaminants. Vaporized organics are recovered by condensation or carbon adsorption for additional treatment. Thermal desorption is often used in combination with dechlorination (described above). | Thermal desorption has been demonstrated to be effective in removing PCBs from sediments. Combined thermal desorption/dechlorination processes can be more effective than thermal desorption or dechlorination alone. | Yes | | Thermal Destruction | Thermal destruction uses high temperatures (typically over 1000° F) to destroy contaminants in sediments. The products of thermal destruction vary depending on the type of material being burned and destruction operating parameters. | Thermal destruction has been demonstrated to be very effective in destroying PCBs in soils and sediments. | Yes | Page 4 of 6 TAMS Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |--|---|--|----------| | Immobilization | Immobilization includes processes that physically or chemical reduce mobility of contaminants. Immobilization includes solidification, stabilization, and encapsulation processes. Solidification involves addition of reagents to a contaminated matrix to produce a solid block; stabilization involves conversion of contaminated material to a more chemically stable form; encapsulation involves enclosure of contaminant particle with an additive or binder. <i>Ex situ</i> immobilization involves mixing setting agents such as cement, quicklime, grout, as well as reagents, with sediments in an immobilization system. Solidification has been combined with dechlorination (described above) to treat PCBs in sediments. | | Yes | | Beneficial Use | | | | | Landfill Cover/ Construction Fill/Mine Reclamation | These beneficial use options involve using dredged sediment in its original form, i.e., the sediment may be treated to remove contaminants prior to being put to use, but its essential form will still be that of a sediment material. Options evaluated include cover material for solid waste landfill, fill material for construction projects, and fill material for abandoned mine land reclamation. It is likely that any beneficial use option will require meeting certain appropriate criteria for the specific use | Because of the potentially large volume of dredged material which will be generated, more than one beneficial use option may be selected and implemented to provide sufficient capacity. Another option is to consider smaller components of the total dredged volume, such as separated coarse-grained material through sediment washing or solids classification. Other treatment may be required to meet certain criteria for the specific beneficial use option. | Yes | | Manufacture of Commercial
Products | These technologies combine thermal treatment processes to destroy contaminants in sediments with some further physical/chemical process to convert the decontaminated sediment into a useable commercial product. The technologies evaluated involve production of cement, light weight aggregate, and glass tile from treated sediment. | These technologies combine the
effectiveness of thermal destruction with the attractive features of beneficial use options, i.e., no product for disposal and potential recovery of processing costs through sale of the useable product. | Yes | Page 5 of 6 TAMS Table 4-1 Initial Technology Evaluation and Screening | General Response Action/
Remedial Technology | Description | Evaluation | Retained | |---|--|--|----------| | Disposal | | | | | Land Disposal | Dredged sediment land disposal options evaluated include confined disposal facilities (CDFs) and landfills. CDFs can be upland (outside the river 100-year floodplain) or near-shore (within the 100-year floodplain or in shallow, non-navigation areas of the river). Landfills evaluated include off-site TSCA and non-TSCA facilities. | | Yes | | Aquatic Disposal | This technology involves disposal of dredged material in a contained aquatic disposal (CAD) facility. In a CAD, dredged sediments are placed on the bottom or in excavated depressions in the river, which are capped to prevent contaminant release. | Because of the potentially large volume of dredged material which will
be generated, there is likely insufficient area in the river to place the
total dredged volume without significantly changing the nature and
hydraulic characteristics of the river in the vicinity of the disposal sites. | | Page 6 of 6 TAMS Table 4-2 List of Process Options for Capping | Capping
Material
Used | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Erosion
Potential | Capital
or
O & M
Intensive | Availability | Cost | Representative
Recent Projects | Special or
Unique Features | |---|--|-----------------------|--|--|-------------------------------------|----------------------|---|--|--| | Active
Materials:
activated
carbon or
chemicals | Yes | Pilot | No | No | O&M | Readily
available | Variable
depending on
site parameters | | Needs to be covered with inert materials to obtain stability. Can be applied at surface or mixed with sediment. Usually applied as a composite capping method and is used to help prevent transport or advection of contaminants. | | Armored
Materials | Yes | Pilot | No | No | O&M | Readily
available | Variable
depending on
site parameters | Sheboygan River GM Central Foundry Division Superfund Site, St. Lawrence River | Involves use of armor stone such as riprap or gravel applied by surface discharge. Can be used in combination with inert materials such as sand as the lower layer. Armoring used in navigation channels or high flow situations to prevent erosion. | | Inert Materials:
geotextile or
geomembrane | Yes - Tested
for PCBs in
sediments at
pilot scale | Full-Scale | No | No unless
overlain
with a
sand or
clay
material | O&M | Readily
available | Variable,
depending on
site parameters
and amount of
geotextile
material to be
used | Sheboygan River Manistique River | Has been applied in layers in which geotextile is used as the bottom and top layer with fill material placed in the middle. Geotextile is applied by subsurface discharge. Can be used with armoring materials as the top layer. | Page 1 of 3 TAMS Table 4-2 List of Process Options for Capping | Capping
Material
Used | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Erosion
Potential | Capital
or
O & M
Intensive | Availability | Cost | Representative
Recent Projects | Special or
Unique Features | |--------------------------------------|--|-----------------------|--|----------------------|-------------------------------------|--|--|---|---| | Inert Materials:
clay, silt, sand | Yes | Full-Scale | No | Yes | O&M | Readily
available | Variable
depending on
size of area to
be capped and
inert material
utilized | New Bedford
Harbor
Sheboygan River
Simpson-Tacoma,
WA
Eagle Harbor
St. Lawrence River | Local material is placed above
the contaminated spots at a
thickness of 1.5 ft.
Material is applied by
subaqueous discharge. | | Inert Materials:
Aquablock | Yes - Tested
for PCBs in
sediments at
pilot scale | Pilot | No | No | O&M | Limited due to
lack of
technology
demonstration
in the field | \$40,000 -
\$45,000 per
acre | Ottawa River
Project
Fort Richardson
Army Base, Alaska | Aquablock is a proprietary combination of bentonite clay, polymer, and a solid gravel core. Consists of pellets that expand to form a continuous cohesive layer when released in water. Can be applied by surface discharge or by subaqueous discharge. | Page 2 of 3 TAMS Table 4-2 List of Process Options for Capping | Capping
Material
Used | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Erosion
Potential | Capital
or
O & M
Intensive | Availability | Cost | Representative
Recent Projects | Special or
Unique Features | |--|---|-----------------------|--|----------------------|-------------------------------------|---|--|-----------------------------------|--| | Sealing
Agents:
Polymer Films | Not tested for
PCBs in
sediments | Not available | No | Yes | O&M | Limited due to
design and
construction
constraints | Variable
depending on
site parameters | | Uses a barge mounted application system with coagulable polymers, hot melt materials or pre-formed films that applies materials by subaqueous discharge. | | Sealing
Agents:
Subsurface
Grouting | Not tested for
PCBs in
sediments | Not available | No | Yes | O&M | Readily
available | Variable
depending on
site parameters | | Mixed with top layer to form crust; inert materials placed over crust. Applied by subaqueous discharge. | | Thin Layer
Capping | Yes- Tested
for PCBs in
sediments at
Pilot Scale | Not available | No | Yes | O&M | Readily
available | Variable
depending on
site parameters
and required
cap thickness | Pier 64 Seattle,
Washington | Process also referred to as particle broadcasting; refers to cap thickness of 6" or less. | Page 3 of 3 TAMS Table 4-3 List of Process Options for Bioremediation | Process Name | Vendor Name | Applicability
to Treat
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or O&M
Intensive | Availability | Processing
Rate or
Cleanup Time | Cost | Representative
Recent Projects | Special or
Unique Features | |---|-----------------------------|---|-----------------------|--|--------------------------------|----------------------|--|---|-----------------------------------|---| | Aerobic
Biotreatment
System (ABS) | Bio-Genesis
Technologies | Not tested for
PCBs in
sediments | Pilot scale | No | Both | Readily
available | No available information | \$1200 on
annual basis:
cost of
nutrients,
microbes and
mixing
technology
to
biodegrade
waste | | in situ or ex situ
Utilizes GT-1000
biostimulation/
bioaugumentation
technology.
Does not treat
metals. | | Anaerobic PCB Dechlorinating Granular Consortia | MBI
International | Yes - Tested
at bench scale
for PCBs in
sediments | Bench-scale | No | O&M | Available | 24 weeks to
reduce 100
ppm PCBs to
levels < 10
ppm | <\$100 per ton | | in situ Utilizes anaerobic, dechlorinating microbes. Bioremediation/ dechlorination process. | | B&S Achieve-
B&S Industrial | B&S Research,
Inc. | Not tested for
PCBs in
sediments | Pilot | No | O&M | Readily
available | No available information | \$8 - \$25 per
CY | | in situ/ potentially
ex situ
Does not treat
heavy metals. | Page 1 of 5 TAMS Table 4-3 List of Process Options for Bioremediation | Process Name | Vendor Name | Applicability
to Treat
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or O&M
Intensive | Availability | Processing
Rate or
Cleanup Time | Cost | Representative
Recent Projects | Special or
Unique Features | |--|---|---|-----------------------|--|--------------------------------|----------------------|--|--|-----------------------------------|---| | Bevrox
Biotreatment -
Liquid-solid
contact (LSC)
digestion process | Bogart
Environmental
Services, Inc. | Not tested for
PCBs in
sediments | Bench Scale | No | O&M | Readily
available | 300 - 500
CY/day | \$18/CY;
costs directly
related to
volume of
material
treated | | ex situ Does not treat metals. | | Bio-Integration | Interstate
Remediation
Services | Not tested for
PCBs in
sediments | Commercial | No | Both | Readily
available | 3 to 12 weeks;
depends on
amount to be
remediated | \$20 to \$75
per ton | | ex situ/in situ
Substrate-specific
aerobic microbes
grown in
bioreactors on site. | | Bioremediation
Solid-Phase | Arctech, Inc. | Not tested for
PCBs in
sediments:
Tested for
PCBs in soil
and sludge at
bench scale | Pilot scale | No -
collected
waters
need to be
treated at
WTP | Both | Limited | No available information | \$32 - \$150
per CY | | ex situ Technology uses idea of composting. Transportable and does not treat metals. | Page 2 of 5 TAMS Table 4-3 List of Process Options for Bioremediation | Process Name | Vendor Name | Applicability
to Treat
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or O&M
Intensive | Availability | Processing
Rate or
Cleanup Time | Cost | Representative
Recent Projects | Special or
Unique Features | |---|---|--|-----------------------|--|--------------------------------|----------------------|---|---|-----------------------------------|---| | Catalytic Air
Oxidation | Environmental
Catalyst
Company | Not tested for
PCBs in
sediment | Pilot | No | Both | Limited | Two to three
months
depending on
initial and final
concentrations | \$7/lb; 50 lb
cost \$350 and
treats about
250,000 CY | | in situ- bubble in oxygen or ex situ by dredging and tilling to supply oxygen. Catalyst is a Fe complex which destroys hydrocarbons in contaminant. | | Enhanced
Bioremediation
Technology | ETUS, Inc.,
Enhanced
Bioremediation | Not tested for
PCBs in
sediments:
Tested for
PCBs in
sludge at pilot
scale | Commercial | No | O&M | Readily
available | 0.037 - 3.7
CY/batch | \$20 - \$40 per
CY | | in situ/ex situ
Ambient air temp.
of <50E F
required.
Uses biological
activator solution
(CNP-PLUS). | | EnviroMech
Gold Biocatalytic
Contaminant
Degradation | Eco-Tec, Inc. | Not tested for
PCBs in
sediments | Commercial | No | Both | Readily
available | Variable
depending on
type and conc.
of the targeted
contaminant | \$28 - \$32 per
ton | | in situ or applied
ex situ
Can be combined
with soil washing. | | Fluid Extraction -
Biological
Degradation
(FEBD) | Institute of Gas
Technology | Not tested for
PCBs in
sediments | Pilot | No | Both | Limited | No available information | No available information | | ex situ Combines contaminant extraction with biodegradation. | Page 3 of 5 TAMS Table 4-3 List of Process Options for Bioremediation | Process Name | Vendor Name | Applicability
to Treat
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or O&M
Intensive | Availability | Processing
Rate or
Cleanup Time | Cost | Representative
Recent Projects | Special or
Unique Features | |---|--------------------------------|---|-----------------------|--|--------------------------------|----------------------|---------------------------------------|------------------------------|-----------------------------------|---| | Phyto-
Remediation | | Yes-presently
being tested
for PCBs in
dredged
material | Pilot | No | Both | Limited | Information not available | Information
not available | | ex situ Involves use of plants to reduce contaminant concentrations; for PCBs, the mulberry plant is being tested and the hackberry for PCB congeners | | PCB-REM | Institute of Gas
Technology | Not tested for
PCBs in
sediments:
Tested for
PCBs in soil
at Pilot Scale | Pilot | No | Both | Limited | Information not available | \$250 - \$400
per ton | | ex situ Process combines extraction using surfactants, chemical oxidation, and biological treatment. | | Soil and
Sediment
Washing Process | BioGenesis
Enterprises Inc. | Yes - Tested
for PCBs in
sediments at
bench-scale
and presently
being tested
at pilot scale | Commercial | Yes | Both | Readily
available | 40 CY/hr | | NY/NJ Harbor
(1997, 1999) | ex situ
Soil washing/
biodegradation
process. | Page 4 of 5 TAMS Table 4-3 List of Process Options for Bioremediation | Process Name | Vendor Name | Applicability
to Treat
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or O&M
Intensive | Availability | Processing
Rate or
Cleanup Time | Cost | Representative
Recent Projects | Special or
Unique Features | |---------------------|---|---|-----------------------|--|--------------------------------|----------------------|---|----------------------------|-----------------------------------|--| | White Rot
Fungus | Intech One
Eighty | Not tested for
PCBs in
sediments | Commercial | No | O&M | Readily
available | No available information | \$150 - \$200
per ton | | ex situ | | X-19 | Advanced
Solutions for
Environmental
Treatment
(ASET) | Not tested for
PCBs in
sediments | Pilot (soil) | No | O&M | Readily
available | 5,000 CY/acre
at one time or
1,000,000 CY
per year of soil
treated; 7
months | \$30/CY or
\$20 per ton | | ex situ X-19 is a microbiological humic polymer. No tilling or additional handling required. | Page 5 of 5 TAMS Table 4-4 List of Process Options for Solvent Extraction Technologies | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--|--|--|---|-------------------------------------|----------------------|--|-------------------------------------|--------------------------------------|---| |
B.E.S.T.
Process | Resources
Conservation
Company | Yes - Tested for
PCBs in sediments | Commercial | Yes | Both | Readily
available | 70 tons/day
(operating
24 hrs/day) | \$90 - \$280
per ton | Grand Calumet
River | ex situ
Uses secondary or
tertiary amines. | | Biotherm
Process | American
Biotherm
Company, LLC | Not tested for PCBs in sediments | Commercial (Sludge drying process = Biotherm Process) Pilot (Solvent extraction process) Bench (PCB demonstration level) | Yes | Both | Readily
available | 50-200
tons/day | \$200 - \$500
per ton | | ex situ Uses second generation Carver Greenfield Process. | | Detergent
Extraction of
NAPLS
(DNAPLS) | S.S.
Papadopulos
& Associates,
Inc. | Not applicable for PCBs in sediments | Pilot | No - only
waste stream
is spent
activated
carbon
canisters | Both | Readily
available | No available information | \$11/ square
yard for
bedrock | | in situ Removes nonaqueous phase organic compounds. | Page 1 of 5 TAMS Table 4-4 List of Process Options for Solvent Extraction Technologies | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|---|--|---|--|-------------------------------------|--|--|---------------------------|---|---| | Fluid
Extraction -
Biological
Degradation
(FEBD) | Institute of Gas
Technology | Not tested for PCBs in sediments | Pilot | No | Both | Limited | No available information | No available information | | ex situ Combines contaminant extraction with biodegradation. | | L.E.E.P.
(Low Energy
Extraction
Process) | Enviro-
Sciences
(formerly ART
International) | Yes - Tested for
PCBs in sediments | Pilot (LEEP PCB
Plant)
Full (LEEP Tar
Plant) | Yes | Both | Readily
available
(Commercial
plant in
development
for LEEP
PCB Plant) | | \$95-
\$300
per ton | Waukegan
Harbor - LEEP
performed
treatability
study; achieved
99.9% DRE at
initial PCB
concentration of
3.4%. | ex situ Does not treat heavy metals. Treats matrices containing as much as 90% water. | | Light
Activated
Reduction of
Chemicals
(LARC) | Arctech, Inc. | Not tested for PCBs in sediments | Pilot | No | Both | Readily
available | 64-lamp
pilot-scale
LARC unit
has capacity
of 30 gallons | \$85/ton | | ex situ
Does not treat
metals. | | Methanol
Extraction
Process | Environmental
Treatment and
Technologies
Corporation | Yes - Tested for
PCBs in sediments | Pilot | No | Both | Unknown.
latest data
known as of
1986. Unable
to contact
vendor. | No available information | No available information | USEPA Region
III Clean-up at
Minden, West
Virginia | ex situ Uses methanol solution to extract organic contaminants. | Page 2 of 5 Table 4-4 List of Process Options for Solvent Extraction Technologies | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |-----------------|----------------------|---|---|---|-------------------------------------|----------------------|---|---|--------------------------------------|--| | ORG-X | Metcalf & Eddy, Inc. | Not tested for PCBs
in sediments but
has been used to
treat PCBs in clay
loam at full scale | Full Scale -
treatment of 1000
tons
Pilot Scale -
treatment of 200
tons
Facilities
operated in
Europe | Yes - need to
dispose of
spent solvent
and fines
which contain
the
contaminants | Both | Readily
available | 4 tons/hr
capable of
operating 24
hours per day | \$200 per ton
for 2,000
tons
<\$100 per
ton for
100,000 tons | | ex situ Has been used in combination with Hydro-SEP sediment washing process and SOLFIX, a heavy metal stabilization process. | | SELPhOX | | Not tested for PCBs in sediments | Pilot scale | No | Both | Limited | Field test unit
can handle 10
to 20 kg
batches in
semi-
continuous
mode | \$200/ton | | ex situ Process combines supercritical fluid extraction of contaminants and wet air oxidation destruction of extracted contaminants. | Page 3 of 5 Table 4-4 List of Process Options for Solvent Extraction Technologies | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|--|--|-----------------------|--|-------------------------------------|----------------------|---|--------------------------|--|---| | Solvated
Electron
Technology | Commodore
Environmental
Services, Inc.
which is a
subsidiary of
Commodore
Applied
Technologies
(CAT) | Not tested for PCBs in sediments | Bench Scale | No | Both | Readily
available | No available information | \$100-\$175
per ton | New Bedford
Harbor - this
technology
selected to be
part of the FS
study however
no follow up
contract has
been issued | ex situ Commodore uncertain if test results apply to or can be duplicated for large-scale applications. SET unsuitable for aqueous waste streams. | | Solvent
Extraction
Soil
Remediation
(SESR) | National
Research
Council of
Canada | Not tested for PCBs in sediments: Tested for PCBs in soil at bench scale | Bench Scale | Yes | Both | | Pilot expected
to run at 5 ton
per hour | | | ex situ Process involves the separation of fine particles from the extracting solvent using a liquid phase agglomeration technique. | | Solvent
Extraction
Treatment
System | Terra-Kleen
Response
Group, Inc. | Not tested for PCBs in sediments | Commercial | Yes | Both | Readily
available | 1-1,000 CY
per batch | \$165 - \$600
per ton | | ex situ Does not treat metals. Soils containing > 20% clays or fines decrease effectiveness. | Page 4 of 5 TAMS Table 4-4 List of Process Options for Solvent Extraction Technologies | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|----------------|--|-----------------------|--|-------------------------------------|----------------------|--|-------------------------|--------------------------------------|--| | SoPE (Solid
Organic
Phase
Extraction) | <i>U</i> , | Not tested for PCBs in sediments | Commercial | Yes | Both | Readily
available | 50 CY/day | \$90 - \$140
per ton | | ex situ
Works best for high
sand, low moisture
content. | | * | , | Yes- Tested for
PCBs in sediments
at bench scale | Bench Scale | Yes | Both | Readily
available | Bench Scale 1
kg
Lab Scale
10 g
Expected Full
scale 15,695
CY/yr | \$288 - \$353
/CY | Hudson River | ex situ Moisture content affects initial extraction rates but not the final extraction
efficiency. | Page 5 of 5 Table 4-5 List of Process Options for Chemical Dechlorination | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent Projects | Special or Unique
Features | |--|---|--|---|--|-------------------------------------|--|---|-----------------------------|-----------------------------------|---| | Base Catalyzed
Decomposition
(BCD) | National Risk
Management
Research
Laboratory | Not tested for
PCBs in
sediments | Commercial | No | Both | Readily available | 20 tons/day | \$245
per ton | | ex situ
Developed by
USEPA/US Navy. | | APEG-PLUS | Galson
Remediation
Corporation | Not tested for
PCBs in
sediments | Commercial | Yes | Both | Readily available | 160 - 200
tons/day | \$200 -
\$500 per
ton | | ex situ Not cost-effective for large waste volumes. High clay and water content affect performance. | | Dechlorination
and
Immobilization
Process | Funderburk and
Associates
(formerly
HAZCON) | Not tested for
PCBs in
sediments | Commercial | No | O&M | Inactive for last
5 years; Readily
available | 60 CY/hr
120 tons/hr | \$98 -
\$206 per
ton | | ex situ Dechlorination and solidification/ stabilization process. | | Solvated
Electron
Technology
(SET)
(Agent 313) | Commodore
Applied
Technologies | Not tested for
PCBs in
sediments | Pilot scale. Presently completing construction and testing of full-scale system | No | Both | Limited. Design
and Planning
phase for full
scale soil
decontamination
system | Batches of
100 - 600 lb
(0.05 - 0.3
ton) | \$100 -
\$175 per
ton | | ex situ Does not treat heavy metals. Process designed for separation of radioactive wastes. | Page 1 of 2 TAMS Table 4-5 List of Process Options for Chemical Dechlorination | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent Projects | Special or Unique
Features | |---|-------------------------------|--|---|--|-------------------------------------|---|--|---------------|-----------------------------------|--| | Gas Phase
Chemical
Reduction
Process | Eco-Logic | Yes - Tested
for PCBs in
sediments at
bench scale | Pilot scale. Full Scale exists but does not process large amounts; New system under development | Yes | Both | Readily
Available (pilot).
Larger system at
full scale to be
available in 12 to
18 months. | 5 - 10 tons
per day
(pilot).
Present full
scale process
at 70 - 90
tons/hr | \$550 per ton | New Bedford
Harbor | ex situ Thermal desorption and gas phase chemical reaction (dechlorination) process. | | KPEG | SDTX
Technologies,
Inc. | Not tested for sediments | Pilot scale
(field tested) | No | Both | Not offered currently | No available information. | Not
given | | ex situ Usually used in combination with SoilTech ATP (thermal desorption). | | XeChlor
Process | Xetex
Corporation | Not tested for sediments | Pilot scale | No -
produces
biphenyl | O&M | Limited | No available information. | \$259 per ton | | ex situ
Process utilizes a
titanocene
dichloride catalyst. | Page 2 of 2 TAMS Table 4-6 List of Process Options for Solidification/Stabilization | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent Projects | Special
or
Unique
Features | |--|----------------------------------|--|-----------------------|--|-------------------------------------|----------------------|--|----------------------|-----------------------------------|--| | Chemical
Fixation/
Stabilization | Chemfix
Technologies | Not tested for
PCBs in
sediments | Commercial | No | O&M | Readily
available | 40 - 75 CY/hr | \$30-\$50
per ton | | in situ Treats matrices ranging between 8- 75% solids. Waste must be pumpable. | | Mectool
Remediation
System | Millgard
Corporation | Not tested for
PCBs in
sediments | Commercial | No | Both | Readily
available | >15 CY/hr | \$40-\$150
per CY | | in situ Soil mixing technology which enhances bioremediation. Inject solidification compounds to stabilize contaminants. | | Mobile Injection
Treatment Unit
(MITU) | CBA
Environmental
Services | Not tested for
PCBs in
sediments | Commercial | Yes | Both | Readily
available | 18.5 - 370
CY/hr
depending on
size unit
utilized | \$19 per ton | | in situ/ex situ Bioremediation and Stabilization process. Inject biochemicals to enhance bioremediation or stabilization compounds to stabilize waste. | Page 1 of 2 TAMS Table 4-6 List of Process Options for Solidification/Stabilization | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent Projects | Special
or
Unique
Features | |---|--|--|-----------------------|--|-------------------------------------|---|---|-------------------------|-----------------------------------|--| | Solidification
Stabilization | Geo-Con, Inc. | Not tested for
PCBs in
sediment:
Tested for
PCBs in soil
at bench scale | Commercial | No | Both | Readily
available | 18 - 45 tons
per hour | \$40 - \$50
per CY | | in situ Best suited for inorganics. Capping of treated waste required. | | Solidification
Stabilization | Soliditech, Inc. | Yes - Tested
for PCBs in
sediments | Pilot | No | O&M | Technology
not offered
currently | Determined
by size of
batch mixer
used | \$152 per
cubic yard | New Bedford
Harbor | in situ/ex situ
Adds SVOCs to
treated waste. | | Solidification
Stabilization /
Chemical
Fixation | STC
Remediation | Not tested for
PCBs in
sediments | Commercial | No | Both | Readily
available | 500-1000
CY/day
(ex situ) | \$190 - \$330
per CY | | ex situ
in situ | | Dechlorination
and
Immobilization
Process | Funderburk
and Associates
(formerly
HAZCON) | Not tested for
PCBs in
sediments | Commercial | No | O&M | Inactive for
last 5 years;
Readily
available | 60 CY/hr
120 tons/hr | \$98 - \$206
per ton | | ex situ Dechlorination and solidification/ stabilization process. | Page 2 of 2 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--------------------------------------|--------------------|---|--|----------------------------------|--|------------------|----------------------|--------------------------------------|--|---| | Excavation Eq | uipment | | | | | | | | | | | Backhoe Clamshell Front end loader | Numerous | May be
suitable
for
shoreline
sediments
accessible
from landside | Can remove
sediments
from within
dewatered
working areas | Negligible
inside work area | Dependent
upon scale of
equipment | in-situ | Readily
available | Relatively
low capital
and O&M | Willow Run
Creek
Marathon Battery
GM Central
Foundry | Requires
dewatering. | | Conventional 1 | Dredges | | | | | | | | | | | Enclosed
Clamshell | Cable Arm,
Inc. | Equipment
can be scaled
to meet river
access
requirements | Some
applicability to
soft sediments
located in
deeper
portions of
river (channel) | Low | Depends on
bucket size and
operating
conditions | - | Readily
available | \$20,000/mth | Ford Outfall Many Canadian projects Sheboygan River United Heckathorn | Generally
considered to be
more effective
on debris laden
sediments than
hydraulic
dredges. | Page 1 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|---|---|---|---|--|--|---|---|--|--| | Hydraulically
Operated
Backhoe or
Bucket | Hitachi,
Caterpillar,
Case,
Komatsu,
BEAN | Equipment
can be scaled
to meet river
access
requirements | Useful on both
soft and hard
sediments at
all river depths | Depends on operating conditions | Relatively slow
production rate
due to bucket
size limitations | - | Components
are readily
available.
However,
project-
specific unit
may need to
be developed | \$700,000
(Large
Excavator)
\$380,000
(Med.
Excavator) | Sheboygan River GM Central Foundry Bayou Bonafouca | Easily
transportable to
site via truck.
Minimal draft
requirements
when barge
mounted. | | Cutterhead
Dredge | Elicott
International
Numerous
others | Equipment
can be scaled
to meet river
access
requirements | Applicable on
most sediment
types if they
are debris free | Dependent upon
relation between
suction and
dredging rates
High pump rate
leads to low
resuspension
rate | Various based
on pump and
pipeline sizes
as well as on
site
characteristics
including
sediment types
and presence
of debris | Low spoils density due to substantial water entrainment (usually <10-20% solids) | Readily
available | \$650,000 | New Bedford
Harbor
LTV Steel | Able to remove most sediment types. Several have covers or shrouds to limit resuspension. Transportable to site via truck. | | Suction
Dredge | Dredge
America
Elicott
International | Equipment
can be scaled
to meet river
access
requirements | May not be
suitable on
consolidated
sediments
such as those
in Upper
Hudson | Relatively low
as there is no
equipment for
dislodging
sediment | Depends on pump size | Low spoils
density due
to
substantial
water
entrainment
(typically 5-
15% solids) | Readily
available | \$625,000 | Manistique River
and Harbor
(some diver
assisted)
LTV Steel (some
diver assisted) | Can be diver held/assisted. Can be self propelled. Truck transportable units are available. | Page 2 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |------------------|-------------------|--|--|----------------------------------|-----------------------------|------------------|----------------------|------------------------------------|--------------------------------------|-------------------------------------| | Large Scale D | redges | | | | | | | | | | | Bucket
Ladder | Several | Configuration not typically compatible | NA | High | High | Variable | Readily
available | Unit costs
are low
when used | NA | NA | | Bucket Wheel | | with use on
Hudson River | | | | | | for navigational | | | | Dipper | | Dredges are | | | | | | dredging projects | | | | Dragline | | usually large and have | | | | | | | | | | Dustpan | | significant
draft | | | | | | | | | | Sidecasting | | requirements | | | | | | | | | | Trailing | | | | | | | | | | | Page 3 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process Name Specialty Mec | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |----------------------------|--|---|--|--|-------------------------------------|--|---|---|--|---| | Amphibious
Excavators | Aquarius
Systems
IHC Holland
Normrock
Industries
(Amphibex) | Versatile
dredge can
access most
areas of river
while afloat or
while using its
legs/spuds | Useful on both
soft and hard
sediments at
most river
depths | Dependent upon
dredging
method
employed | Low due to
scale of
equipment | Dependent
upon dredge
head
employed | Units would
likely need to
be
constructed
for this
project | \$355,000 | Scarborough
Bluffs, Ontario
(47,250 cy from
waters as shallow
as 19.5 inches)
Welland River | Easily transportable to site via truck. Low draft. Equipped with wide range of accessories including backhoe bucket and cutterhead equipped hydraulic intake. | | Visor
Dredging
Grab | HAM
Dredging
of the
Netherlands | When mounted on barge, likely to have minimal draft requirements and be able to access most portions of river | May not be
suitable on
"hard-packed"
sediments
such as those
in Upper
Hudson | Low due to
hydraulically
sealed bucket | Low due to
scale of
equipment | Spoils near
in-situ
density | Some
availability | \$700,000
(Large
Excavator)
\$380,000
(Med.
Excavator) | No projects
conducted in US | Hydraulically
sealed bucket
(barrel)
designed for
contaminated
silt removal. | Page 4 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|--|---|--|---|---|--|--------------------------|-------------------------|---|---| | Auger-Cutterl | head Dredges | • | | | | | | | 1 | | | Horizontal
Auger Dredge | Ellicot International (Mudcat) ESG Manufacturing Others | Equipment
can be scaled
to meet river
access
requirements | Applicable to areas of
debris free sediments May not be applicable to "hard packed" sediments | Can be low
depending on
operating
procedures | Various based
on pump and
pipeline sizes
as well as on-
site
characteristics
including
sediment types
and presence
of debris | Low spoils
density due
to
substantial
water
entrainment | Readily
available | \$350,000-
\$400,000 | Manistique River Marathon Battery Grasse River Cumberland Bay | Easily
transportable to
site via truck.
Low draft. | | Clean-Up
System
Refresher
System
Delta Dredge
Waterless
Dredge | NA | NA | Suitable for
removal of
most sediment
types | Low due to
shrouds over
cutterheads | Dependent
upon operating
conditions | | Not readily
available | NA | Successfully used outside the US | Uses shielded,
horizontal
auger.
Sophistacated
instrumentation
and controls. | Page 5 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|---|---|---|---|---|--|--|------|--------------------------------------|--| | Submersible
Pump
Eddy Pump | Dredge
America
Elicott
International | Equipment
can be scaled
to meet river
access
requirements | May not be
suitable on
consolidated
sediments
such as those
in Upper
Hudson | Relatively low
as there is no
equipment for
dislodging
sediment | Depends on pump size | Low spoils
density due
to
substantial
water
entrainment
(10-15%
solids) | Submersible
pumps readily
available
Eddy Pump
not readily
available | NA | Petit Creek
Flume | Can be diver held/assisted. Can be self propelled. Truck transportable units are available. | | Specialty Suct | ion Dredges | | | | | | | | | | | Matchbox
Dredge
Wide
Sweeper
Cutterless | NA | NA | May not be
effective on
consolidated
sediments in
river | Generally low | Dependent
upon
operational and
site conditions | NA | Not readily
available | NA | New Bedford
Harbor
(Matchbox) | Generally use
shrouds to limit
resuspension.
Sophisticated
positioning
equipment. | Page 6 of 7 TAMS Table 4-7 List of Dredging Technology Options | Process
Name | Vendor
Name(s) | Ability to Access Hudson River Sediments | Applicability
to Removal
of Hudson
River
Sediments | Sediment
Resuspension
Rate | Sediment
Removal
Rate | Spoil
Density | Availability | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|---------------------------------------|---|---|--|---|-----------------------|-------------------------------|------|--|--| | Pneumatic Dr | edges | | | | | | | | | | | Pneuma
Pump
Oozer Pump
Airlift Dredge | NA | Equipment
can be scaled
to meet river
access
requirements | Performs best
on loosely
consolidated
silts and clays
at significant
water depths,
generally >12
ft. | Generally low if
cutting
attachments are
not used | Dependent
upon
operational and
site parameters | High solid
content | Not readily available in U.S. | NA | Substantial use outside of US | Uses
compressed air
or pressure
differential
to draw in
sediment and
force to surface. | | Sediment Free | ezing | | | | | | | | | | | Eriksson
System | Eriksson
Sediment
Systems, Inc. | NA | Suitable for PCB contaminated sediments Less effective on debris laden sediments | Minimal since
there is no
cutting/digging | Slow, as freezing requires 24-hr. | in-situ | Low | High | Bench scale
demonstration
conducted at Port
Hope Harbor,
Ontario | Difficult to use
on sediments
laden with large
debris or rocky
areas. Requires
offshore
electrical
generating and
refrigeration
unit. | Page 7 of 7 TAMS Table 4-8 List of Suspended Sediment Containment Technology Options During Sediment Removal | Option Name | Vendor Name(s) | Applicability to
Hudson River
Conditions | Setup Requirements | Capital Cost | Representative
Recent Projects | Special or Unique
Features | |----------------------|--|--|--|--|---|--| | Cofferdam/ Caissons | NA | Applicable to the control of suspended sediments | Significant equipment and crew requirements | High | Housatonic River | Minimal passage of suspended sediments from work area. Installation may induce some suspension. | | Berms- Rock/Earth | NA | Applicable to containment of areas to be dewatered and remediated "in the dry" | Significant equipment and crew requirements | Medium | Tennessee Products Marathon Battery | | | Oil Containment Boom | Brockton
Equip./Spilldam,
Inc. | Low applicability to PCB contaminated sediments | Small equipment and crew requirements | Low | Manistique River Grasse River | Only effective at containing floating product. | | Portable Dam | Portadam | Applicable to containment of areas to be dewatered and remediated "in the dry" 9 ft depth limitation | Few laborers and
minimal equipment
required | Medium | GM Central Foundry
(dry excavation) Tennessee Products
(unsuccessful) | Modular impermeable, fabric barrier supported by steel framework. | | Sheet Piling | Macro
Enterprises, Ltd.
Jet-Drive
Contracting | Applicable to the control of suspended sediments Applicable to containment of areas to be dewatered and remediated "in the dry" | Significant equipment
requirements
including driving rig
and crew | \$500 -
\$1200/linear ft
of sheeting | GM Central Foundry
(silt control) Willow Run Creek (dry
excavation) Petit Creek Flume (silt
control) | Minimal passage of suspended sediments from work area. Installation may induce some suspension. | Page 1 of 2 TAMS Table 4-8 List of Suspended Sediment Containment Technology Options During Sediment Removal | Option Name | Vendor Name(s) | Applicability to
Hudson River
Conditions | Setup Requirements | Capital Cost | Representative
Recent Projects | Special or Unique
Features | |-----------------------|---|--|--|---|--|---| | Silt Screen/Curtain | Brockton
Equipment/
Spilldam, Inc.
(Turbidity Barrier) | Applicable to the control of suspended sediments | 5 - 10 laborers and
work boats including
barge and positioning
craft required | \$10 - \$20/linear
ft of curtain/
screen plus cost
of anchoring
materials | Numerous silt screen operations Formosa Plastics (silt curtain) | Screen is geotextile which blocks sediment only. Curtain is impervious to both water and sediment. | | Water Filled Barriers | GeoCHEM, Inc. | Applicable to the control of suspended sediments Applicable to containment of areas to be dewatered and remediated "in the dry" 7 - 10 ft depth limitation | 5 - 11 laborers and
minimal equipment
required | Medium | Marathon Battery | Multiple impermeable inner tubes filled with water for mass weight. | Page 2 of 2 TAMS Table 4-9 List of Process Options for Sediment Washing | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features |
--|---|---|-----------------------|--|-------------------------------------|----------------------|--|---------------------------------------|--------------------------------------|--| | GHEA
Associates
Soil Washing
Technology | GHEA
Associates | Not tested for
PCBs in
sediments.
Tested for
PCBs in soil at
pilot scale | Pilot scale | Yes | Capital | Readily
available | Information
not available | \$50-\$80 per
ton at full
scale | | ex situ
Process uses selected
surfactants similar to
detergent-like-
chemicals. | | Hydro-Sep Soil
Washing
Process | Metcalf and
Eddy | Not tested for
PCBs in
sediments | Commercial | Yes | Both | Readily
available | 2-20 tons/hr. | \$50 - \$125
per ton | | ex situ Effective with moisture content <25%. | | PCB-REM | Institute of Gas
Technology | Not tested for
PCBs in
sediments.
Tested for
PCBs in soil at
pilot scale | Pilot | No | Both | Limited | Information
not available | \$250 - \$400
per ton | | ex situ Process combines extraction using surfactants, chemical oxidation, and biological treatment. | | Soil Washing | Westinghouse
Remediation
Services | Not tested for
PCBs in
sediments.
Tested for
PCBs in soil at
pilot scale | Commercial | Yes | Both | Readily
available | (Large unit)
20 tons/hr.
(Small Unit)
2 - 4 tons/hr | \$150 - \$250
per ton | | ex situ
Trailer mounted.
Handles clay
well. | Page 1 of 3 TAMS Table 4-9 List of Process Options for Sediment Washing | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|--|--|-----------------------|--|-------------------------------------|----------------------|--|-------------------------|---|---| | Soil and
Sediment
Washing
Process | BioGenesis
Enterprises
Inc. | Yes - Tested
for PCBs in
sediments | Commercial | Yes | Both | Readily
available | 40 CY/hr. | \$74
per
CY | NY/NJ Harbor
(1997, 1999
Current Pilot
study) | ex situ Combination of soil washing and bioremediation. | | Soil
Remediation
System (SRS) | Environmental
Remediation
International
(EnRem),Ltd. | Not applicable | Pilot | Yes | Both | Readily
available | 10-20 tons
per hour | Not Given | | ex situ Recovers hydrocarbons for reuse. Uses EnRem-17 chemical surfactant. | | Soil Washing | ARCADIS
Geraghty &
Miller, Inc.,
Soil Washing
Technology | Not tested for
PCBs in
sediments:
Tested for
PCBs in soils
at bench scale | Commercial | Yes | Both | Readily
available | 30 tons/hr | \$136-\$226
per ton | | ex situ
Transportable | | Soil / Sediment
Washing | Formerly Bergmann USA - Currently available from Linatex, Inc. | Yes - Tested
for PCBs in
sediments at
pilot scale | Commercial | Yes | Both | Readily
available | 30 CY/day Full scale - 300 tons/hr Pilot scale - 5 tons/hr | \$75 - \$125
per ton | Saginaw Bay-
Tested PCBs in
SITE
Demonstration | ex situ Suitable for river sediments with <40% silt or clay. | Page 2 of 3 TAMS Table 4-9 List of Process Options for Sediment Washing | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---------------------------------------|----------------------|--|-----------------------|--|-------------------------------------|--------------|--|--------------------------|--------------------------------------|--| | Trozone Soil
Remediation
System | Kinit
Enterprises | Not tested for
PCBs in
sediments | Commercial | No | Both | | 25 CY/hr
(Full-Scale) | \$30 - \$1000
per ton | | ex situ
Process uses a
mixture of ozonolysis,
reverse osmosis and
enzymes. | Page 3 of 3 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |-------------------------------------|---|--|-----------------------|--|-------------------------------------|-------------------------------------|--|-----------------------------|--------------------------------------|--| | AST Thermal
Desorption
System | Advanced Soil
Technologies | Not yet tested
for PCBs in
sediments | Commercial | No; Collected off-gas is processed in a baghouse and then sent to a thermal oxidizer for contaminant destruction | Both | RIMS unable
to contact
vendor | 8-30 tons
per hour | \$35-
\$150 per
ton | | ex situ Process uses a counter-flow rotary kiln at 900° F. Can not process inorganics or hydrocarbons with boiling point > 900° F. | | | Recycling
Sciences
International,
Inc. | Yes - tested for
PCBs in
sediments at
pilot scale | Commercial | Yes;
Contaminants
enter into gas
stream and are
then treated in
the gas
treatment
system at 320°F
where solids,
organic vapors,
and vaporized
water are
extracted from | Both | Readily
available | 3-12 tons/hr
(original
system)
73 tons/hr
(larger
system) | \$150 -
\$600 per
ton | Waukegan
Harbor
Superfund Site | ex situ Combines Thermal Desorption and Vapor Extraction. Does not treat metals. Process uses low temp. fluidized bed with hot air at 100° F-1400°F. | Page 1 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---------------------------------------|--------------------|---|---|--|-------------------------------------|----------------------|--|----------------------------|--------------------------------------|---| | DuraTherm
Desorption
Technology | DuraTherm,
Inc. | Not yet tested
for PCBs in
sediments | Pilot scale Has been used to demonstrate full-scale cleanups | Yes;
Contaminants
are vaporized
and then swept
out the vapor
exit by a
counter-current
nitrogen purge
and then the gas
is condensed | Both | Readily
available | 30,000 tons
per year | \$100-
\$350 per
ton | | ex situ Process uses a rotating drum to volatilize contaminants at high temp. using a non- oxidizing atm. at temperature as high as 1400° F. | | Enviro-Tech
Thermal
Desorption | CMI
Corporation | Not tested for
PCBs in
sediments:
Process used to
treat organics
and
hydrocarbons | Commercial | No; Volatilized contaminants pass through a thermal dust conductor and then into a thermal oxidizer for combustion | Both | Readily
available | 8-120 tons
per hour | No cost
given | | ex situ Process is a thermal treatment technology which can operate in two different modes depending on contaminant. Uses a rotary desorber with variable temp. depending on the contaminant. | Page 2 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name |
Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--------------------------------------|--|---|--|-------------------------------------|---|--|---------------|--------------------------------------|---| | Gas Phase
Chemical
Reduction
Process | Eco-Logic | Yes - Tested
for PCBs in
sediments | Pilot Full scale exists but does not process large amounts New system under development | Yes;
Contaminants
are desorbed
and then
reduced in the
gas phase using
hydrogen | Both | Readily available (pilot) Larger system at full scale to be available in 12 to 18 months | 5 - 10 tons
per day
(pilot)
Present full
scale
process at
70 - 90
tons/hr | \$550 per ton | New Bedford
Harbor | ex situ Thermal desorption and gas phase chemical reaction process. Sediments are fed into a thermal destruction mill where the contaminants are desorbed and then sent into the reactor where the PCBs are destroyed at >850° C. | | GEM 1000 | Midwest Soil
Remediation,
Inc. | Not yet tested
for PCBs in
sediments | Commercial | No; Gas stream filtered through pulse jet baghouse and then into a thermal oxidizer which converts contaminants into CO ₂ , H ₂ O, and HCl | Both | Readily
available | 11-15 tons
per hour | | | ex situ
Process uses a
counter-current rotary
desorber at
temperature ranging
from 400° F to 900° F. | Page 3 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--|--|-----------------------|---|-------------------------------------|----------------------|---|--------------------------|--------------------------------------|--| | High Capacity
Indirect
Thermal
Desorption Unit | Midwest Soil
Remediation,
Inc. | Not yet tested
for PCBs in
sediments | Commercial | Yes; PCB
contaminants
are recovered in
an off-gas
condensing
recovery system | Both | Readily
available | 25 tons per hour | \$125 -
\$225/ton | | ex situ
Process uses an
indirect heated
processor at 1000°F.
System pressure is
kept negative to avoid
unwanted emissions. | | HRUBOUT
Process | Hrubetz
Environmental
Services, Inc. | Not applicable:
PCBs are not
totally removed
due to higher
temp. required
for removal | Pilot scale | No; Exhaust gas
enters a thermal
oxidizer where
contaminants
are destroyed | Both | Readily
available | 1100 CY
per batch or
60 tons per
batch | \$40 -
\$50 per
CY | | ex situ Process involves injection of heat at temp. up to 1200°F into the soil pile and removal of volatilized contaminants through a vacuum. Process does not treat metals. | | Indirect System | Maxymillian
Technologies,
Inc. | Not yet tested
for PCBs in
sediments. Has
been used to
treat PCBs in
soil at full-
scale level | Commercial | Yes; Process
off-gases are
condensed and
liquid then need
to be disposed
of and excess
gas is passed
through carbon
filters | Both | Readily
available | 10 - 20 tons
per hour | \$70-
\$150/ton | | ex situ Process treats media in a rotary drum volatilizer by applying heat indirectly through burners located between the inner and outer shell at a temperature range of 250° F to 1000° F. | Page 4 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|---|--|-----------------------|--|-------------------------------------|----------------------|--|---------------------------|--------------------------------------|---| | IRV-100,
IRV-150, and
IRHV-200
Thermal
Desorption
Systems | McLaren/Hart
Environmental
Engineering
Corp. | Not yet tested
for PCBs in
sediments | Commercial | Yes; Purge gas containing the contaminants from the process enters a cooling loop and a carbon filtration system | Both | Readily
available | (IRV-100)
3-5 tons per
hour
(IRHV-200)
10 -20 tons
per hour | \$50-
\$150 per
ton | | ex situ Process uses an infrared heating carriage. Moisture content > 20% will increase run times from 30 min. to one hour. Treats VOCs and SVOCs. Media treated until target temp. to volatilize contaminants is obtained. | | Low
Temperature
Thermal
Desorption
(CMI80-120) | Midwest Soil
Remediation,
Inc. | Not yet tested
for PCBs in
sediments | Commercial | No; Volatilized
contaminants
are destroyed in
a combustion
system
operating
between 400° F
-1800° F | Both | Readily
available | 80 - 120
tons per
hour | | | ex situ Process uses a rotary desorber with self- regulated temp. control to be adjusted for specific contaminant to convert to vapor phase. | Page 5 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--------------------------------------|--|-----------------------|---|-------------------------------------|----------------------|--|---------------------------|--------------------------------------|--| | Low Temperature Thermal Desorption (CMI ET-650) | Midwest Soil
Remediation,
Inc. | Not yet tested
for PCBs in
sediments | Commercial | Yes; Volatilized contaminants pass through a baghouse, carbon adsorption, dehumidification chamber, and then are scrubbed with HCl | Both | Readily
available | 90 tons per
hour | | | ex situ
Process uses an
indirectly fired rotary
desorber at temp.
between 400° F -
1000° F. | | Low
Temperature
Thermal
Desorption | Environmental
Soil
Management | Not tested for
PCBs in
sediment. Has
been tested at
bench scale for
PCBs in soil. | Commercial | Yes;
Contaminants
are volatilized
and destroyed in
a thermal
oxidizer at
1500° F forming
products of
combustion | Both | Readily
available | 85 tons per
hour | \$50-
\$100 per
ton | | ex situ Rotary Dryer operates between 500° F - 800° F. High clay content clumps and reduces DRE. | Page 6 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features |
--|---|--|-----------------------|--|-------------------------------------|--|--|-----------------------------|--------------------------------------|--| | Low
Temperature
Oxidation | Carson
Environmental | Not yet tested
for PCBs in
sediments | Bench Scale | No; Off-gases are condensed and treated with activated carbon filters and organic or ozone vapors are treated with manganese dioxide; system produces CO ₂ byproducts | Both | Limited | 20 tons/day | Not
stated | | ex situ Process uses reactivity of hydroxyl radicals in gas phase mixtures of hydrogen peroxide, ozone, and UV light to oxidize pollutants at temp < 200° F due to reactivity of oxidizing vapors. | | Low Temperature Thermal Desorption Plant (LTTDP) | On-site Thermal Services Division of Soil Restoration and Recycling, LLC. | Not yet tested
for PCBs in
sediments | Commercial | No; Exhaust gases containing contaminants are sent through a baghouse and a catalytic oxidizer for combustion of organic compounds | Both | Readily
available | 10-40 tons
per hour | \$40-
\$250 per
ton | | ex situ Process uses a rotary dryer between 500° F -800° F. Process used to treat petroleum hydrocarbons, pesticides, and chlorinated hydrocarbons. | | Low
Temperature
Thermal
Aeration System
(LTTA) | Smith
Technologies
Corporation | Not tested for
PCBs in
sediments | Commercial | Yes | Both | Company filed
Chapter 11
bankruptcy in
1997 | 50 tons/hr | \$133 -
\$209 per
ton | | ex situ
Rotary
Dryer | Page 7 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|--|---|--|---|-------------------------------------|--|--|----------------------------|--------------------------------------|--| | Low Temperature Thermal Desorption (LTTD) system | ASTEC/SPI
Division | Not yet tested
for PCBs in
sediments | Commercial | No; Particulates are filtered from the gas stream and then the gas stream is treated in an oxidizer operating at 1400° F - 2300° F producing CO ₂ and H ₂ O | Both | Readily
available | 10-40 tons
per hour | \$25-\$75
per ton | | ex situ Process uses a primary treatment unit which heats the media to temp ranging from 650° F -1200° F to volatilize contaminants. Does not treat inorganics | | Low
Temperature
Thermal
Desorber | Contamination
Technologies,
Inc. (CTI) | Not tested for PCBs in sediments. Process used for treatment of petroleum contaminated soils. | Not known due
to inability to
contact vendor | No; Process sends vaporized contaminants through a cyclone, afterburner at 1400° F, and then a baghouse | Both | Not known due
to inability to
contact vendor | 1200 tons
per day | \$50 -
\$150 per
ton | | ex situ Process uses a rotary kiln thermal stripping technology High moisture content slows the processing time. | | Medium Temperature Thermal Desorption (MTTD) | Carlo
Environmental
Technologies,
Inc.
(CET) | Not applicable
for chlorinated
organics. Used
to treat
hydrocarbons
such as fuels,
gasoline, and
diesel oil. | Commercial | No; Volatilized
contaminants
are destroyed by
high
temperature
oxidation | Both | Readily
available | 30 tons per
hour | \$30-\$69
per ton | | ex situ Process uses direct heat exchange in a rotary kiln to heat waste material to volatilize contaminants. | Page 8 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |-----------------------|--|--|--|--|-------------------------------------|--|--|----------------------------|--------------------------------------|---| | Mobile Retort
Unit | Covenant
Environmental
Technologies,
Inc. | Not yet tested
for PCBs in
sediments | Pilot scale. Has
been used to
demonstrate
full-scale
cleanups. | Yes;
Contaminants
are drawn out of
the retort zone
by an induction
fan and then
passed through
a baghouse and
into a heat
exchanger for
condensation | Both | Readily
available | 3-12 tons/hr | \$100-
\$800 per
ton | | ex situ Process utilizes a retort chamber which heats the media allowing the contaminants to vaporize. Does not treat any heavy metals except mercury due to temperature. | | Plasma
Technique | Eagle
Environmental
Technologies,
Ltd. | Not tested for
PCBs in
sediments | Design phase | No; Treated materials converted into benign or monatonic molecules that may form the basis of usable products | Both | Limited;
technology
under current
development | 8.9 kg per
hour | Not
given | | ex situ Process uses a direct current plasma generator at temp. as high as 8280° F and is used in combination with oxygen as the oxidizing agent. | Page 9 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--|--|-----------------------|---|-------------------------------------|----------------------|--|----------------------------|--------------------------------------|--| | Portable
Anaerobic
Thermal
Desorption Unit
(ATDU) | Purgo, Inc. | Not tested for
PCBs in
sediments | Commercial | Yes; Gas stream
directed through
a dual-coil
condenser and is
collected for
eventual reuse
in soil cooling
process | Both | Readily
available | 20 tons/hr | \$60 -
\$300 per
ton | | ex situ Process uses a counterflow or parallel flow rotary drum at temp. up to 1400° F and is operated at negative pressure. Does not treat metals. Soil with moisture content >30% will require pretreatment or addition of lime. | | Soil Roaster | ConTeck
Environmental
Services, Inc. | Not tested for PCBs in sediments. Process is designed for treatment of petroleum-contaminated soils. | Commercial | No; Process sends volatilized contaminants through a baghouse and into an after-burner at 1400° F - 1900° F to degrade hydrocarbons into CO ₂ and H ₂ O | Both | Readily
available | 10 - 60 tons
per hour | \$22 -
\$65 per
ton | | ex situ Process uses a rotating desorber drum at 500° F - 1000° F. Additional wet scrubbing required for organic- bound chlorine compounds. Failure has occurred due to condensation in the baghouse. | Page 10 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments |
Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---------------|---|--|-----------------------|---|-------------------------------------|---|--|----------------------------|--------------------------------------|--| | Soil Tech ATP | Smith
Technology
Corporation | Yes - Tested
for PCBs in
sediments | Commercial | Yes;
Contaminants
are removed
from aqueous
condensate by
filtration,
oxidation, and
adsorption | Both | Readily
available | 5 - 25 tons
per hour | \$150 -
\$250/ton | Waukegan
Harbor
Superfund Site | ex situ Process uses indirectly fired rotary kiln at 1200° F - 1450° F. Treats media with contaminants that vaporize at 1100° F. Has been used in combination with APEG. | | STRATEX | ARCADIS
Geraghty and
Miller, Inc. | Not yet tested
for PCBs in
sediments | Bench scale | Yes; Gas stream
is treated in
non-contact
condenser, a
reheater, fabric
filter and an
adsorber before
discharge to the
atmosphere | Both | Limited - No
performance
record to date | 5-10 tons
per hour | \$125-
\$150 per
ton | | ex situ Process uses a treatment chamber at 332° F - 407° F and a residence time of 1 to 2 hours. Stabilization items such as quick lime can be added to the chamber to enhance treatment and increase solids temp. Uses concept of stream stripping, S/S, and thermal desorption. | Page 11 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|---|--|-----------------------|---|-------------------------------------|----------------------|--|----------------------------|--------------------------------------|--| | System 64MT
Low
Temperature
Thermal
Desorption | Advanced
Environmental
Services, Inc. | Not yet tested
for PCBs in
sediments | Commercial | No; Exhaust gas is filtered for particulates and then directed to a thermal oxidizer operating at 1800° F - 2000° F for contaminant destruction | Both | Readily
available | 22-25 tons
per hour | \$50 -
\$125 per
ton | | ex situ Process uses a counter-current flow rotary dryer at a temperature range of 800° F to 1000° F. Heavily contaminated soils with high BTU are damaging to effectiveness of process. | | Thermal
Desorption | ETTS EcoTechniek Thermal Treatment | Yes - Tested
for PCBs in
sediments | Commercial | Yes | Both | Readily
available | 20 - 40 tons
per hour | \$60 -
\$200 per
ton | | ex situ Process uses a rotary kiln thermal treatment system which operates in two zones - a heat exchanger and a combustion zone. Does not treat metals. | Page 12 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|----------------------|---|-----------------------|--|-------------------------------------|----------------------|--|----------------------------|--------------------------------------|---| | Thermal Phase
Separation Unit
(TPS) | SCC
Environmental | Not yet tested
for PCBs in
sediments.
Process has
been tested on
PCBs in soil. | Commercial | Yes; Vapors
collected during
desorption are
first cooled in
quench chamber
resulting in
condensation
and then are
sent through
carbon
adsorption beds | Both | Readily
available | 4 tons per
hour | \$250-
\$350 per
ton | | ex situ Process uses extraction chamber that is indirectly heated by propane fuel and operates at temp. of 932° F. System capable of treating organic concentrations of less than 30% and particle size less than 0.75 in. in diameter. | | Thermal
Desorption | IT Corporation | Not tested for
PCBs in
sediments.
Tested for
PCBs in soil. | Pilot scale | No;
Contaminants
volatilize and
are then sent to
a gas treatment
system where
the off-gas is
treated by
secondary
combustion or
physical/
chemical
treatment | Both | Readily
available | 15 - 150
lb/hr | \$80/ ton | | ex situ Process uses a gas- fired furnace which indirectly heats media to temp. greater then the boiling point of the contaminants. Chlorinated furans produced if process conditions not controlled. | Page 13 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |--|---|--|----------------------------|---|-------------------------------------|--|---|-----------------------------|--------------------------------------|--| | Thermal
Desorption | Westinghouse
Remediation
Services | Not tested for
PCBs in
sediments | Pilot (soil and
sludge) | Yes;
Contaminants
are desorbed
into the vapor
phase at temp.
above their
boiling points
and then the
contaminants
are condensed
and disposed of
off-site | Both | Readily
available | 10 tons/hr. | \$150 -
\$300 per
ton | | ex situ Process uses infrared heating at 400° F to 1000° F and operates below atmospheric pressure in an oxygen-deficient environment in the primary heating chamber. | | Thermal
Distillation and
Recovery
Process (TDR) | Caswan
Environmental
Services, Ltd. | Not yet tested
for PCBs in
sediments | Commercial | Yes; Extracted
vapors are
condensed and
removed or
taken out by
activated carbon
filters | Both | Limited; used
in full-scale
clean-up in
1995 but
RIMS unable
contact vendor
to determine
current status | Full scale:
10 - 15
tons/hr.
Pilot scale:
50 - 220
lb./hr. | \$75-
\$300 per
ton | | ex situ Process uses nitrogen as a purge gas to remove oxygen and then uses an indirect- fired rotary kiln to remove organics at temperature as high as 500° F. Does not treat inorganics. | Page 14 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--------------------------------------|--|-----------------------
--|-------------------------------------|----------------------|--|-----------------------------|--------------------------------------|---| | Thermal
Desorption
System | Maxymillian
Technologies,
Inc. | Not yet tested
for PCBs in
sediments | Commercial | No; Gas
treatment
containing the
contaminants is
passed through
a cyclone, a gas-
fired afterburner
at 1800° F, a
quench tower
and a baghouse | Both | Readily
available | 16 - 22 tons
per hour | \$40 -
\$300 per
ton | | ex situ Process uses a direct- fired, co-current thermal desorber based on rotary kiln technology and operates between 600° F - 1000° F. Need minimum of 60% solids in feed material. | | Thermo-O-
Detox Medium
Temperature
Thermal
Desorption | ETG
Environmental
Inc. | Not tested for
PCBs in
sediments | Commercial | Yes;
Contaminants
are removed at
temp. below
their boiling
points and then
disposed of | Both | Readily
available | 2 Batches of
25 to 75 CY
per day | \$150 -
\$250 per
ton | | ex situ Process is a non- oxidative thermal desorption system that operates under a high vacuum at 750° F to 950° F. Can be combined and used with BCD process. | Page 15 of 16 TAMS Table 4-10 List of Process Options for Thermal Desorption | Process Name | Vendor Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous or
Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--------------------------------------|---|-----------------------|--|-------------------------------------|----------------------|---|----------------------------|--------------------------------------|---| | Two-stage
Tandem Soil
Remediation
Unit (TDU) | Thermotech
Systems
Corporation | Not yet tested
for PCBs in
sediments. Has
been used to
treat PCBs in
soil | Commercial | No; Collected
off-gas passes
through inertial
separator,
baghouse, and
thermal oxidizer
where
contaminants
are destroyed | Both | Readily
available | 20-50 tons
per hour
depending
on which
model is
used | \$40 -
\$150 per
ton | | ex situ Process uses a counter-flow rotary drum where temp. varies depending on contaminant and model used. Four different models available and operate at 600° F, 850° F, 1000° F, or 1400° F. | | XTRAX | Waste
Management
Inc. | Yes- Tested
for PCBs in
sediments at
pilot and full
scale at EPA
SITE
Demonstration | Commercial | Yes;
Contaminants
are volatilized
and then cooled
to form a liquid
condensate
where organics
are settled out
and removed for
disposal | Both | Readily
available | 250 tons
per day | \$150-
\$250 per
ton | Re-Solve
Superfund
Site | ex situ Process uses a indirectly fired rotary dryer operating between 250° C - 450° C. Does not treat or remove metals. | Page 16 of 16 TAMS Table 4-11 List of Process Options for Thermal Destruction | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Repre-
sentative
Recent
Projects | Special
or
Unique
Features | |---|-----------------------------------|--|-----------------------|--|-------------------------------------|---|--|---------------------------------------|---|---| | AGGCOM | Institute of
Gas
Technology | Not yet tested
for PCBs in
sediments | Pilot scale | Yes | Both | Readily
available | 6 tons per
day | Not
given | | ex situ
Process uses
fluidized
bed/cyclonic
agglomerating
combustor at
temperature of
2000° F - 3000°
F | | Circulating
Fluidized Bed
Combustor
(CFBC) | Cintec
Environment
Inc. | Not yet tested
for PCBs in
sediments; tested
for PCBs in soil | Commercial | Yes | Both | Readily
available | 5 tons per
hour | Varies with media, conc. PCBs, volume | | ex situ
Process uses a
high turbulence
incineration
bed at 1337° F | | Circulating
Bed
Combustor
(CBC) | General
Atomics
(GA) | Not yet tested
for PCBs in
sediments; tested
for PCBs in soil | Commercial | Yes | Both | Limited: GA not pursuing this technology in the US but maintains technical and related capabilities | 100
tons/day | \$150 -
\$300
per ton | | ex situ Process uses a fluidized bed incinerator which uses high velocity air to create a turbulent zone for destruction at 1600° F | Page 1 of 6 TAMS Table 4-11 List of Process Options for Thermal Destruction | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative Recent Projects | Special
or
Unique
Features | |--|--|--|---|--|-------------------------------------|--|--|-----------------------------|--------------------------------|--| | CPMC
Process | Combustion
Process
Manufact-
uring
Corporation | Not yet tested
for PCBs in
sediments | Commercial | Yes | Both | Unavailable
due to lack of
case study
information | 84 to 840
tons per day | Not
given | | ex situ Process uses two separate burning stages: low temp. starved air and high temp. excess air phase | | Cyclone
Furnace
Vitrification | B&W
Services, Inc. | Not yet tested
for PCBs in
sediments | Pilot scale.
Full-scale has
been designed | Yes | Both | Readily
available | 0.1 tons per
hour | \$465 -
\$600
per ton | | ex situ
Process uses a
water-cooled
cyclone furnace
at 800° F and
6-million
BTU/hr input | | Hybrid
Thermal
Treatment
System
(HTTS) | IT
Corporation | Not yet tested
for PCBs in
sediments | Commercial | Yes | Both | Readily
available | 17.87 tons
per hour | \$230
per ton | | ex situ Process uses a rotary kiln combined with intense heating for incineration | Page 2 of 6 TAMS Table 4-11 List of Process Options for Thermal Destruction | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative Recent Projects | Special
or
Unique
Features | |--|---|---|--|---|-------------------------------------|----------------------|---|--|--------------------------------|---| | Thermal
Oxidation
Treatment
Unit* | Bennett
Environment
- RECUPER
SOLS | Yes | Commercial | No - plant
does not
produce
dioxins or
furans | Both | Readily
available | 10 tons per
hour or 240
to 300 tons
per day | \$250
per ton | | ex situ Uses rotary kiln. Off-site (St. Ambrose, Quebec). Truck wastes to facility at cost of \$70/ton | | Incineration * | Onyx
Environ-
mental
Services
Port Arthur,
TX | Not yet used for
disposal of
PCBs in
sediments | Commercial
(soil, sludge,
liquids) | Yes | Both | Readily
available | 120
tons/day;
Would take
50 years to
burn one
million tons | \$900
per
ton
for
PCB
soil | | ex situ Off-site Send waste dry Cost dependent on amount of material sent- working with GE presently | | Incineration * | Safety-Kleen
(Aragonite),
Inc.
Salt Lake
City, Utah | Yes | Commercial | Yes | Both | Readily
available | For bulk
solids:
4.75 ton per
hr | \$560
per ton | | ex situ Off-site Rail access 10 miles from site. Uses slagging rotary kiln. Fastest burn rate of all Safety-Kleen facilities. | Page 3 of 6 TAMS Table 4-11 List of Process Options for Thermal Destruction | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative Recent Projects | Special
or
Unique
Features | |--|---|--|---|--|-------------------------------------|--|--|---|--------------------------------|--| | Incineration * | Safety-Kleen
(Coffeyville)
Inc.
Coffeyville,
KS | Yes | Commercial | Yes | Both | Presently idle (11/99), expected to begin operation in Spring 2000 | 2.5 ton/hr | \$640
per ton
for
PCB
waste | | ex situ Off-site Waste must arrive dry. This facility usually used for dioxin waste. | | Incineration * | Safety-Kleen
(Deer Park),
Inc.; Deer
Park, TX | | Commercial | Yes | Both | | | | | ex situ
Off-site | | Infrared
Incineration | IT
Corporation | Not tested for
PCBs in
sediments. Used
to treat PCBs in
soil | Commercial (soil) | Yes | Both | Readily
available | 210
tons/day | \$250 -
\$350
per ton | | ex situ Near river Fuel oil required if BTU content <2000 BTU/lb. | | Plasma Arc
Centrifugal
Treatment
(PACT)
System | Retech,
Incorporated | Not yet tested
for PCBs in
sediments | Commercial status abroad Plans for constructing a commercial plant in the US | Yes | Both | Readily
available | 0.05 to 0.9
tons per
hour | \$800 -
\$1800
per ton | | ex situ Near river Process uses a plasma torch to treat waste at 1982° F - 2432° F. | Page 4 of 6 TAMS **Table 4-11 List of Process Options for Thermal Destruction** | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative Recent Projects | Special
or
Unique
Features | |--|-------------------------------------|--|--|--|-------------------------------------|---|---|------------------|--------------------------------|---| | Pyrokiln
Thermal
Encapsulation | Smith
Technology
Corporation | Not yet tested
for PCBs in
sediments | Batch | Yes | Both | Limited | 1 ton per
hour (pilot
planned
feed rate) | Not
given | | ex situ
Near river
Process uses a
rotary kiln
combined with
fluxing agents
at 1800° F -
2200° F. | | Rotary
Cascading
Bed
Incineration | Pedco, Inc. | Not yet tested
for PCBs in
sediments | Development
status is
uncertain due
to problems
contacting
vendor | Yes | Both | Availability uncertain | Information
not
available | Not
given | | ex situ Near river Process uses direct solid-to- gas contact by lifting and cascading solids through hot gas stream. | | Shirco
Infrared
Thermal
Destructive
System | Shirco
Infrared
Systems, Inc. | Not yet tested
for PCBs in
sediments. Has
been used to
treat PCBs in
soil and on
equipment | Commercial | Yes | Both | Limited: no
longer
available
through US
vendor,
available
from Gruppo
Italimpresse
in Italy | 100
tons/day | \$197
per ton | | ex situ Near river Electric infrared process. Waste must be sized from 5 microns to 2 inches to be treated. | Page 5 of 6 TAMS Table 4-11 List of Process Options for Thermal Destruction | Process
Name | Vendor
Name | Applicability to
PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate or
Cleanup
Time | Cost | Representative Recent Projects | Special
or
Unique
Features | |--|-----------------------------------|--|-----------------------|--|-------------------------------------|----------------------|--|--------------------------------|--------------------------------|---| | Thermal
Destruction
Unit | IT
Corporation | Not yet tested
for PCBs in
sediments. Has
been used on
PCBs in soil. | Commercial (soil) | Yes | Both | Readily
available | 210
tons/day | \$250 -
\$350
per ton | | ex situ
Near river
Infrared
incineration | | Transportable
Incineration
System | Roy F.
Weston, Inc. | Not yet tested
for PCBs in
sediments. Has
been used on
PCBs in soil. | Commercial (soil) | Yes | Both | Readily
available | 2 Systems:
TIS-5 at 7
tph; TIS-20
at 4 - 30 tph | \$150 -
\$250
per
ton | | ex situ
Near river
Rotary kiln
incinerator | | Universal
Demercuri-
zation Process
(UNIDEMP) | Battelle
Memorial
Institute | Not yet tested
for PCBs in
sediments | Pilot scale | Yes | Both | Readily
available | 5000 tons
per year
commercial
plant | \$300 -
\$600
per ton | | ex situ Oxidative thermal treatment; uses counter-current rotating furnace at 857° F - 1007° F. | Page 6 of 6 TAMS Table 4-12 List of Options for Beneficial Use | Beneficial Use
Option | Applicability to Use PCB Contaminated Sediments | Availability | Processing
Rate | Cost | Representative Recent
Projects | Special Requirements or Unique
Features | |-------------------------------|---|---|---|---------------|---|--| | Agriculture | Not applicable due
to levels of
contamination in
the Hudson | NA | NA | NA | NA | PCB concentration must be low enough to not affect humans or biota if used | | Construction Fill | Potentially
applicable. May
have issues with the
extent of
contamination and
liability | May be limited to
government/ public
projects | Vary depending upon
selected use and the
amount of material
required for the
specific project | | Jersey Gardens Mall Site,
Elizabeth, NJ; used
850,000 CY of treated
dredged material for
parking lot base | Potential to be used in government projects involving roadways or airports which allow sediment to be encapsulated. Fine material may not be appropriate as road base or construction fill. | | Habitat Development | Not applicable due
to levels of
contamination in
the Hudson | NA | NA | \$5 - \$35/CY | NA | PCB concentration must be low enough to not affect humans or biota if used. | | Parks and Recreation | Not applicable due
to levels of
contamination in
the Hudson | NA | NA | NA | NA | PCB concentration must be low enough to not effect humans or biota if used. | | Solid Waste Landfill
Cover | Applicable. May
be limited to
sediments with
PCB levels below
applicable criteria | Available | 2700 - 7500 tons per day | \$29/CY | Dredged sediments from
the Erie Canal used as
cover material in the
Mohawk Region | Sediment would require settling and dewatering to moisture content of 13%. | Page 1 of 2 TAMS Table 4-12 List of Options for Beneficial Use | Beneficial Use
Option | Applicability to Use PCB Contaminated Sediments | Availability | Processing
Rate | Cost | Representative Recent
Projects | Special Requirements or Unique
Features | |--------------------------|---|---
---|-----------------------|---|---| | Mine Reclamation | Applicable but can
only accept PCBs <
4 ppm | Limited. Further
advancement depends
on groundwater data
and public opinion
from current
demonstration project | Present pilot-scale project using 20,000 CY of dredged material. Large project to be conducted with of 200,000 to 250,000 CY of NY Harbor dredged material. | \$42 - \$86 per
CY | Consolidating Technologies currently conducting a demonstration project using 20,000 CY of dredged sediments from Port of NY/NJ | Reclamation projects conducted in Pa. Involves closing and backfilling mine openings, backfilling open pits, and grading and revegetating abandoned mine sites. | Page 2 of 2 TAMS Table 4-13 List of Process Options for Thermal Destruction/Beneficial Use | Process Name | Vendor
Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate
or Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |-----------------------------|--|--|-----------------------|--|-------------------------------------|----------------------|---|---|--------------------------------------|--| | Cement Lock -
Technology | IGT/Endesco | Yes - Tested
at pilot scale
for sediments
contaminated
with PCBs | Pilot | No | Both | Readily
Available | 30,000 CY/yr
(rate of
demonstration
project at the
NY/NJ Harbor)
Commercial
to process
500,000 CY/yr | Treatment
\$35-50/CY
Cement
Processing
\$50/ton
Market price
cement
\$50/ton | NY/NJ Harbor | ex situ Uses a rotary kiln melter. Forms material appropriate for manufacturing of construction grade cement. | | In situ
Vitrification | Geo-Safe
Corporation
(aka GeoMelt) | Not tested for
PCBs in
sediments | Commercial (soil) | No | Both | Readily
available | 4 - 6 tons/hr. Up
to mass of 1,400
tons | | | in situ/ex situ Rain or snow have negative impact. Mobile No beneficial use stated at this time from this process. | Page 1 of 3 TAMS Table 4-13 List of Process Options for Thermal Destruction/Beneficial Use | Process Name | Vendor
Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate
or Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|----------------------------|--|---|--|-------------------------------------|--|---|----------------------|---|--| | Manufacture of lightweight aggregate | JCI/Upcycle | Yes - Tested
at bench scale
for sediments
contaminated
with PCBs | Pilot (fall of
1999) | No | Both | Limited -
dependent
upon
completion of
scheduled pilot
scale
demonstration | Commercial
to process
500,000 CY/yr | Not yet
available | Expected to be
used at NY/NJ
Harbor as
Demonstration
project pending
results of pilot
scale study in
Fall 1999 | ex situ Uses a rotary kiln thermal process. Process produces lightweight aggregate. | | Plasma Energy
Pyrolysis System
(PEPS) | Vanguard
Research Corp. | Not yet tested
for PCBs in
sediments | Pilot Currently demonstrating technology for the US Army | No-
Process
forms clean
gas and
treated
water as
by-products | Both | Limited | | Not yet
available | | ex situ Technology operates by forming an electrical arc between two electrodes causing the temp. to increase to 3000° F. Produces a synthetic gas rich in hydrogen which can be used as a clean fuel to produce steam or electricity. | Page 2 of 3 TAMS Table 4-13 List of Process Options for Thermal Destruction/Beneficial Use | Process Name | Vendor
Name | Applicability
to PCBs in
Freshwater
Sediments | Development
Status | Hazardous
or Toxic
Residuals
Produced | Capital
or
O & M
Intensive | Availability | Processing
Rate
or Cleanup
Time | Cost | Representative
Recent
Projects | Special
or
Unique
Features | |---|--------------------------------|--|-----------------------|--|-------------------------------------|--|---|----------------------|---|---| | Plasma Arc
Vitrification | Westinghouse | Yes - Tested
at bench scale
for sediments
contaminated
with PCBs | Pilot | No | Both | Readily
Available | Demonstration plant 99,404 CY/yr Full-scale facility to process 497,021 CY/yr | \$915-
\$1220/ton | NY/NJ Harbor | ex situ Uses plasma arc torch to melt contaminated material. Process produces a molten glass that is used to manufacture tile and fiberglass. | | Thermo-chemical
Decontamination
Process | Institute of Gas
Technology | Not yet tested
for PCBs in
sediments | Pilot | No | Both | Limited -
dependant
upon results
from
demonstration
project | 30,000 CY/yr
Scalable to
100,000 CY/yr | Not yet
available | Newark Bay/Lower Passaic River: using this process with 500 CY of dredged material from this river body | ex situ Process uses a rotary kiln which produces a pozzolanic material that can be mixed with Portland cement to produce a construction- grade blended cement. | Page 3 of 3 TAMS # **Near River Disposal Facilities** | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |---|---|---|---|--|---|---|-----------------------|----------------------------------|---|--| | Upland
Confined
Disposal
Facility
(CDF) | Various
potential
locations along
Upper Hudson
River | Yes - Depending on permit requirement - likely limited to <50 ppm PCBs | NA | Potential
capacity
depends on
size of
CDFs | NA | Capacity
depends on
size of CDFs | \$15 - \$50 per
CY | NA | Sheboygan River - used CDF to enhance bioremediation in sediments Buffalo River- polymer added to sediments prior to being pumped into the CDF | Likely significant local opposition to any near river disposal facility. | | Near Shore
Confined
Disposal
Facility | Remnant Deposits; other potential locations in 100-yr floodplain or non-navigable areas of River. | Yes -
Depending on
permit
requirement -
likely limited to
<50 ppm PCBs | NA | Potential
capacity
depends on
size of
CDFs | NA | Varies:
Depends on
size of near
shore area
utilized | \$15 - \$50 per
CY | NA | New Bedford Harbor- stored PCB contaminated sediments for several years in a CDF until final disposal in an off-site landfill | Likely significant local opposition to any near river disposal facility. | Note:
Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 1 of 10 TAMS ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |---|--------------------------------|---|--|------------------------------------|---|---|--|----------------------------------|---|--| | Al Turi LF,
Inc. | Orange County
- Goshen, NY | NA | NA | Presently
Awaiting
Expansion | NA | NA | NA | NA | NA | Not accepting any new accounts as of 11/99. | | BFI Waste
Systems of
North
Anerica, Inc.
Niagara Falls
Landfill
(formerly
CECOS
Landfill) | Kenmore, NY | Yes
(Accept C&D,
sludges, and all
non-hazardous
wastes) | Yes - rail
access
exists
into
landfill | None | Next 20
years | Accept 500 tons/day or 90,000 tons/7-mth dredge yr. | \$30 - \$60
per ton -
this is cost for
unloading RR
cars and
disposal | None | | Waste sent must
be at least 20%
solids.
Waste must pass
TCLP tests.
Equipped for
gondola cars. | | CINTEC | LaSalle,
Quebec | Yes | Yes - rail
access
exists
into
landfill | More space
to expand | 6-7 years but
will increase
once more
space is
acquired | | | | | Can not accept
waste from the
US - would need
to go through
Laidlaw | | Colonie LF | Albany County - Newtonville NY | No | NA | NA | NA | NA | \$60/ton | NA | NA | Can not accept contaminated soils. | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 2 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |---------------------------|--------------------------------------|--|---|--|---|--|--|--|---|--| | Delaware
County SLF | Delaware
County - Delhi,
NY | No | No | Active cell
almost full:
one new
cell to open
up | 7-10 yrs. | NA | free | NA | NA | No MSW from outside county is allowed. Does not accept contaminated soil. | | Enfoui-Bec
(Becancour) | Quebec-along
St.Lawrence
River | Yes | No; has
indirect
access to
a port | Do not
expect to
close; May
expand
permit to
aquire
more cells | No expected closure data | Have space
available for
300,000
metric tons
but may
expand
permit | \$40/metric
ton
(Canadian)
Discount rate
for large
amounts of
material | Additional
\$10 for
weight of
trucks plus
7%TPS
and TUQ
7.5% | | Need to be able to shovel the sediments. Private firm (PROGESTEC) decides wastes received. | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 3 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |--------------------------|---------------------------------------|--|--|---|---|--|----------|--|---|--| | Franklin Co.
Regional | Franklin
County -
Constable, NY | Yes - Strict
regulations by
NYDEC on
allowable PCB
concentrations.
Quoted to be in
the ppb range | Closest rail siting is 6 miles away; then truck to site at own expense | 750,000 tons: Expected to increase if permits approved from DEC for rest of land in area. | 14 years left
to operate
with
available
space for
750,000
tons of waste | Up to 95
tons/day or
43,000
tons/year | \$85/ton | Fees
depend on
quantity of
material
disposed | | Must dewater
sediments first.
Does accept PCB
contaminated
wastes. | | Fresh Kills
SLF | Richmond
County - SI,
NY | | | | Currently being phased out | | | | | Unable to contact this landfill. | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 4 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |-----------------------|------------------------------------|--|---|--|---|--|---|----------------------------------|---|--| | Fulton County
LF | Fulton County
-Johnstown,
NY | No | No | NA | 70 years | NA | \$25/truck
after get
permit or
\$50/ton | Permit cost
of \$50 | | Do not accept waste from outside Fulton county. Not a hazardous waste landfill and never have and do not forsee accepting PCB waste in the future. | | Greater
Albany SLF | Albany, NY | No | No | Presently
trying to
get permit
approval to
extend
another 12-
15 years | Expected
reach
maximum
capacity in
March'2000 | 100 tons/day | \$40/ton if
dispose of
100 tons/day;
if less, then
\$50/ton | No | | NA | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 5 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features |
--|--------------------------|--|--|---|--|---|---|--|---|---| | Horizon
Environment | Grandes Piles,
Quebec | Yes | Yes -
located
2.5 miles
from site;
need to
truck
from
there | Yes - could
be adding
2-3 more
cells to
increase
available
capacity of
500,000
tons | Expect to reach maximum capacity in 12 years | No limits on
amount of
material they
recieve | \$50/ton
disposal but
varies case by
case; can
arrange
transportation
and would
add to above
cost | No taxes
from NY;
only taxed
if waste
from Mass. | Lake Champlain - Cumberland Bay: have received 100,000 tons PCB sediments | No free liquid
allowed in soil
(pass paint filter
test) | | Clinton County Landfill: New England Waste Services (formerly Schuyler Falls LF) | Morrisonville,
NY | No | No | NA | 20 years | NA | \$54.75/ton
within county
\$63/ton
outside of
county | NA | | Can not accept
PCB waste.
Classified as a
MSW landfill in
accordance with
NY State
Regulations Part
360. | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 6 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ### NYS Facilites not near the Hudson River* | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail
Access
Existing
or
Planned | Planned
Additional
Capacity | Year Expected to Close or Permit Expiration | Capacity
Limits (per
day/month/
year) | Cost | Additional
Taxes
and Costs | Representative
Projects
Utilizing
Landfill | Special
Handling or
Unique
Features | |-----------------------|---|--|---|-----------------------------------|---|--|----------|----------------------------------|---|--| | Sullivan
County LF | Sullivan
County -
Monticello,
NY | No | No | Planing
Expansion
Presently | 8 years | NA | \$55/ton | NA | | Do not accept contaminated soil. | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 7 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ## Table 4-14 List of Disposal Facilities Non-TSCA Permitted Landfills #### **Out-of-State Facilities*** | State | Type of Landfill | Total Number of Landfills | State Contact Information | |---------------|--|---|--| | Vermont | Municipal, Industrial, C&D | 5 Municipal (as of 11/99) : 3 small unlined
and 2 lined landfills
2 Industrial (5/94)
2 C&D (5/94) | VT Department of Environmental Conservation
802-241-3477
Waste Management Division 802-241-3888
www.anr.state.vt.us/dec | | Massachusetts | Municipal, C&D | 39 Total (as of 4/99)
38 Municipal (4/99)
1 C&D (4/99) | MA Dept. of Environmental Protection
617-292-5961
www.state.ma.us/dep | | Maine | Municipal, Commercial,
Industrial | 2 Commercial (as of 11/99) Municipal (11/99) Industrial (11/99) * only commercial landfills permitted to accept PCB waste | ME Dept. of Environmental Protection
207-287-2651
Bureau of Remediation and Waste Management | | New Hampshire | Municipal | 19 Total (as of 2/99)
0 Industrial (2/99)
0 C&D (2/99) | NH Dept. of Environmental Services
603-271-3503
Waste Management Division 603-271-2900 | | Connecticut | Municipal, Industrial, Bulky, and
Special | 4 Municipal (as of 11/99) 39 Bulky Waste (11/99) 1 Industrial (11/99) 6 Special Waste (11/99) | CT Dept. of Environmental Protection
860-424-3009
Waste Bureau 860-424-3366
//dep.state.ct.us/ | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 8 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ## Table 4-14 List of Disposal Facilities Non-TSCA Permitted Landfills #### **Out-of-State Facilities*** | State | Type of Landfill | Total Number of Landfills | State Contact Information | |---------------|----------------------------|--|--| | New Jersey | Municipal, Industrial, C&D | 14 Total (as of 11/99): Out of 14, some have cells which except C&D and Industrial wastes 7 Industrial (5/94) 3 C&D (5/94) | NJ Dept. of Environmental Protection
609-530-8591
Bureau of Landfill and Recycling 609-984-6650
www.state.nj.us/dep | | Pennsylvania | Municipal | 53 Municipal (as of 10/99):
10 of the 53 are located in eastern
Pennsylvania | PA Division of Municipal and Residential Wastes
717-783-7381
Bureau of Land Recycling and Waste Management
www.dep.state.pa.us/ | | Virginia | Municipal, Industrial, C&D | 67 Municipal (as of 11/99)
30 Industrial (11/99)
23 C&D (11/99) | VA Dept. of Environmental Quality
804-698-4000
www.deq.state.va.us/ | | West Virginia | Municipal, C&D | 20 Municipal (as of 11/99)
2 Not yet constructed (11/99)
4 C&D / Tire Monofill (11/99) | WV Division of Environmental Protection
304-558-5929
Waste Management Division | | Ohio | Municipal, Industrial, C&D | 44 Municipal (as of 11/99)
9 Industrial (11/99)
16 Residual Industrial (11/99)
74 C&D (11/99) | Division of Solid & MW Management
614-644-2621
www.epa.state.oh.us/dsiwm/98faclst/99summar | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 9 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). ## Table 4-14 List of Disposal Facilities Non-TSCA Permitted Landfills #### **Out-of-State Facilities*** | State | Type of Landfill | Total Number of Landfills | State Contact Information | |----------|----------------------------|---|---| | Michigan | Municipal, Industrial, C&D | 100 Municipal (as of 11/99)
27 Industrial (5/94)
5 C&D (5/94) | Waste Management Division Dept. of Natural Resources 517-373-9523 | Notes: Options that are shaded on the table have been tested for or applied to freshwater sediments and/or PCB contaminated sediments. Page 10 of 10 TAMS ^{*} Active Solid Waste Landfills listed for New York State; States were selected based on a 600 mile radius from Albany, NY which is consistent with the distance included in the Early Action Report (1998). Table 4-15 List of Disposal (Off-site) Facilities TSCA-Permitted Landfills | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail Access
Existing or
Planned | Additional
Capacity | Year Expected to Close (Permit Expiration) | Cost | Additional
Taxes
or Costs | Representative
Projects
Utilizing
Landfill | Special Handling
or Unique
Features | |--|-----------------------|--|---|--|---|--|---|--|--| |
Chemical
Waste
Management
(CWM) | Emmelle,
AL | Yes | No- located 11 miles away from site and can be trucked from there using CWM contractor for an additional cost | Available:
2,350 acres -
Present trench
contains
5 ×10 ⁶ cy with
15-20% used
and have two
more trenches
in planning for
the future | 100+ years Capacity limit of 600,000 tons/yr | \$50/ton
(Disposal) + cost
of trucking 11
miles from RR
spur | PCB material tax \$51/ton | Presently accepts
PCB waste but
not sediments
with PCBs | Upon arrival waste must pass the paint filter test; no stagnant water. Capable of unloading gondola rail cars. | | Chemical
Waste
Management | Kettleman
City, CA | Yes | No | Presently
adding land to
extend lifetime
by 5 years | 20 Years | For TSCA PCB solids: \$80/ton If > 1000 ppm: \$204.50/ton | Kings Town
local tax of
10%; plus
state tax of
%10.75/ton if
waste
concentration
>1000 ppm | | Material must be dry
(must pass the paint
filter test; no stagnant
water).
Discounted rates
available for large
amounts of disposal
wastes. | Page 1 of 4 TAMS Table 4-15 List of Disposal (Off-site) Facilities TSCA-Permitted Landfills | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail Access
Existing or
Planned | Additional
Capacity | Year Expected to Close (Permit Expiration) | Cost | Additional
Taxes
or Costs | Representative
Projects
Utilizing
Landfill | Special Handling
or Unique
Features | |--|--|--|---|--|---|---|--|---|---| | Chemical
Waste
Management
of the
Northwest | Arlington,
OR | Yes | Yes | Still filling up
cells and have
lots of land yet
to develop | No current capacity constraints | Established case
by case; depends
on waste stream,
contaminants,
required
treatment prior to
disposal,
quantity, and
quality of waste | Included in the cost | | Waste must arrive dry.
Can solidify on site
but adds to the cost.
Chemical Waste
Management landfills
require wastes to be
permitted and profiled
prior to disposal. | | Waste
Management
Model City
Facility | Model City,
NY (10
miles from
Niagara
Falls) | Yes | No | Increasing size of landfill: waiting for zone approval to expand permits | 20 Years -
expect to close
in 2020
No current
capacity
constraints | Budgetary cost of
\$75/ton assuming
100,000 tons | | Constantly accepting PCB waste | Upon arrival waste must pass the paint filter test; no stagnant water. Ability to accept 1.6×10 ⁶ cy material. | | Envirosafe
Services Inc. of
Idaho | Boise, ID | Yes | No -RR tansfer
station 35 miles
up street; truck to
landfill from
there-included in
total cost | 800,000 cy
capacity left.
Presently siting
new cell of
2×10 ⁶ cy to be
available in 3-
4 yrs. | 8-9 years at minimum No current capacity constraints. | \$50 - \$80 per ton
(Disposal +
trucking cost
from RR spur) | State tax of
\$25 - \$30 per
ton | Constantly accepting PCB waste | Waste must arrive dry
and pass the paint
filter test. Special
discounted rates for
larger volumes.
Can handle gondola
RR cars. | Page 2 of 4 TAMS Table 4-15 List of Disposal (Off-site) Facilities TSCA-Permitted Landfills | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail Access
Existing or
Planned | Additional
Capacity | Year Expected to Close (Permit Expiration) | Cost | Additional
Taxes
or Costs | Representative
Projects
Utilizing
Landfill | Special Handling
or Unique
Features | |--|----------------|--|---|--|---|--|--|--|--| | Safety-Kleen
Grassy
Mountain
Facility | Knolls, UT | Yes | Yes- located across street from landfill. Trucking into landfill would be included in final cost. | Total available capacity = 1.5 million cy Avaliable land to expand onto when this area is full. | + 25 years (Realistically, 70 yrs. when expand and open up new cells) No capacity limits. | \$70/ton (\$45/ton if sent 1×10 ⁶ cy) + \$19/ton for additional trucking into landfill from RR spur across street | State tax of
\$4.75/ton
If RCRA
waste, state
tax of \$28/ton | GM Central
Foundry Division
Superfund Site,
Massena, NY | Waste must be sent
and received 100%
dry. Discount rate for
large quantities.
Capable of handling
gondola cars. | | Safety-Kleen
Lone Mountain
Facility | Waynoka,
OK | Yes | Yes | Just built new
cell; plan to
add three more
cells | In operation until 2020 | \$60/ton | If hazardous
waste, \$9/ton
non-regualted
waste, no tax | | Must receive waste
dry - pass the paint
filter test | | U.S. Ecology,
Inc. | Beatty, NV | Yes | No -Rail Yard
located in Las
Vegas which is
110 miles away;
truck from there | Another cell to open | Minimum of 25 years | \$180/ton -
includes tax, and
trucking from rail
yard | Included in costs | Presently lots of
contracts where
they take PCB
oils,
transformers, etc. | Must send dewatered sediments (upon arrival waste must pass the paint filter test; no stagnant water). | Page 3 of 4 TAMS Table 4-15 List of Disposal (Off-site) Facilities TSCA-Permitted Landfills | Name | Location | Ability to Accept Sediments Contaminated with PCBs | Rail Access
Existing or
Planned | Additional
Capacity | Year Expected to Close (Permit Expiration) | Cost | Additional
Taxes
or Costs | Representative
Projects
Utilizing
Landfill | Special Handling
or Unique
Features | |--------------------------------------|-------------------|--|---|--|---|---------------|---|---|--| | Waste Control
Specialists,
LLC | Andrews,
TX | Yes | Yes - directly into landfill | Space
available.
Ability to
receive 1×10 ⁶
cy | Will close in excess of 50 years No capacity limits. | \$40-\$45/ton | Taxes
dependent
upon waste
classification:
\$7.50/ton | Constantly accepting PCB waste | Upon arrival waste
must pass the paint
filter test.
Can unload 30
gondola cars/day. Can
increase if need. to. | | Wayne
Disposal
Facility | Belleville,
MI | Yes | No- Rail Spur
located 10 miles
away from
facility; would
need to truck
from there. | | 20-25 years | \$120/ton | \$10/ton
Michigan
Hazardous
Waste tax | | Must receive waste as a solid material. Discounted rate for larger volumes of material. | Page 4 of 4 TAMS # Table 4-16 Effectiveness, Implementability, and Cost Evaluation Screening of Technologies | Technology/Process
Option | Description | Effectiveness | Implementability | Cost | Retained | |------------------------------|--|--|---|---|----------| | No Action |
No Action involves deferral of remedial action. Institutional controls are not implemented as part of No Action option. | Does not meet remedial action objectives. No Action alternative retained to provide baseline for analysis as required under NCP. | Technically implementable. Significant resistance may be expected from potential users and others concerned about the River. | Minimal | Yes | | Institutional Control | Institutional controls include monitoring and site use restrictions. Institutional controls can be implemented as part of natural attenuation option, or with active remediation. | Monitoring is effective in tracking contaminants but does not meet remedial action objectives. Institutional controls, if complied with, may prevent exposure to PCBs in the Hudson River, although studies conducted by New York Statehave indicated that the existing fish consumption advisories are not fully effictive. In addition, institutional controls do nothing to prevent exposure of the environment to PCBs. | Implementable. Enforcement of site use restrictions may be difficult in the long term. | Low capital; low O&M | Yes | | Natural Attenuation | Natural attenuation refers to the reduction of volume and toxicity of contaminants in sediments by naturally occurring biological, chemical, physical processes. Extensive site monitoring and modeling are conducted to document contaminant reduction. | Effectiveness depends on how well naturally occurring processes such as biodegradation and burial reduce PCB levels in the river. Monitoring and analysis required as part of this option are effective in tracking trends in PCB dynamics, but do not remediate contaminated sediments for the Hudson River PCB site. Natural attenuation will be evaluated in conjunction with a separate non-time critical removal action for source control in the vicinity of GE's Hudson Falls facility. | Implementable. | Low capital; low O&M | Yes | | Containment | | | | | | | Subaqueous Capping | Capping involves using inert material, active material, or sealing agents to contain sediments <i>in situ</i> . | If properly designed, installed, and maintained capping is effective in containing PCBs in sediments, particularly if groundwater flux is not a significant component. | Potentially implementable in deeper areas. May significantly modify shoreline and affect hydraulics of river if implemented in shallow areas. | Varies depending on cap materials. Low O&M costs. | Yes | | Retaining Dikes/Berms | Retaining dikes and berms include subaqueous or full-depth embankments, bulkheads, sheet piling, and spur dikes constructed either perpendicular to stream flow or parallel to the shore to control downstream transport of contaminated sediments. | Effective for reducing downstream sediment transport. Will not reduce diffusive flux of PCBs from sediment to water column. | Implementable in limited areas. May impede navigation. Rocky soils may hinder implementability of containment options such as sheet piling. | Low capital; low O&M | No | | Removal | | | | | | | Excavation | Excavation methods would apply to sediment removal from shallow, near shore areas where the work zone can be isolated and dewatered. | Excavation can be an effective way to remove contaminated sediments from areas that are inaccessible to dredges. | Implementable. Excavation work zones may require isolation from river and dewatering. Lack of land side access will require excavation work to be set up from the water side. | Low to moderate costs
depending on type of
equipment, volume removed. | Yes | Note: Remedial Technologies that are not retained in the screening are represented by the shading. Page 1 of 3 # Table 4-16 Effectiveness, Implementability, and Cost Evaluation Screening of Technologies | Technology/Process
Option | Description | Effectiveness | Implementability | Cost | Retained | |------------------------------|---|---|--|---|----------| | Dredging | Environmental dredging involves removal of contaminated sediments in a way that minimizes release of sediments and contaminants to the aquatic environment. Dredge types evaluated are classified as conventional, large-scale, and specialty. Conventional dredges include mechanical dredges, which remove sediments by direct mechanical means; and hydraulic dredges, which collect sediments mixed with water in a slurry using centrifugal pumps. Large scale dredges are primarily used for navigational dredging. Specialty dredges are designed to address specific project needs. | Environmental dredging can be an effective method to remove contaminated sediments from the river. | Implementable. | Low to moderate costs
depending on type and size
of dredge, volume dredged. | Yes | | Ex Situ Treatment | | | | | | | Sediment Washing | Sediment washing is a water-based (as opposed to solvent-based) treatment process which extracts contaminants from sediments as well as separates fine fraction of sediments from coarser particles, thereby concentrating the contaminants and reducing volume of material requiring additional treatment or disposal. Soil/sediment washing solutions can include solvents, chelating compounds, surfactants, acids/bases in addition to water, depending on the type of contaminant being extracted. | PCB removal efficiency up to 95% has been reported for treating PCB contaminated sediments at pilot scale. Potentially effective for concentrating contaminants into a fine particle fraction for secondary treatment. Not effective for material with high content of fines. | Implementable. Existing full scale commercial systems can operate at rates up to 300 tph. | Low to moderate processing costs. | Yes | | Solvent Extraction | This technology involves dissolution of contaminants from the sediment matrix using a solvent, recovery and treatment or destruction of the contaminant-bearing solvent. The most common solvents used for PCB extraction are kerosene, propane, methanol, ethanol, dimethylformamide, ethylenediamine, triethylamine, and freon mixtures. | Effective. The effectiveness of this technology for treating PCB contaminated sediments has been demonstrated at pilot scale, where PCB removal efficiency up to 99.9% has been reported, and at full scale, where removal efficiencies of greater than 98% have been reported. | Implementable. May be limited by processing rate of currently available equipment. Existing full scale continuous systems can operate at rates up to 10 tph. Subsequent treatment of PCB-containing solvent may be required. | Moderate to high processing costs. | Yes | | Chemical
Dechlorination | Chemical dechlorination involves removal of chlorine molecules from chlorinated compounds through the addition of a chemical reagent under alkaline conditions. Base-catalyzed decomposition was retained after the initial screening. Dechlorination is often used in combination with thermal desorption (described below). | Effective. BCD in combination with thermal desorption, was used in full-scale project to treat PCB contaminated soil. PCB levels were reduced from a high of 2,917 ppm to average of less than 2 ppm. | Implementable. May be limited by processing rate of currently available equipment. One existing BCD/thermal desorption system has a reported treatment rate of about 20 tpd. | Moderate to high processing costs. | Yes | | Thermal Desorption | Thermal desorption involves heating sediments to below combustion temperatures (200 to 1000° F) to volatilize organic contaminants. Vaporized organics are recovered by condensation or carbon adsorption for additional treatment. Thermal desorption is often used in combination with dechlorination (described above). | Effective. Thermal desorption has been demonstrated at pilot-
and full-scale for treating PCB contaminated sediments, where
PCB removal efficiency of more than 99% has been reported. | Implementable. Existing full scale commercial systems can operate at rates up to 90 tph. Final treatment or disposal of desorbed PCBs will be required. | Moderate to high processing costs. | Yes | | Thermal Destruction | Thermal destruction uses high temperatures (typically greater than 1000° F) to destroy contaminants in sediments. The products of thermal destruction vary depending on the type of material being burned and destruction operating parameters. | Effective. Demonstrated technology in treatment of PCB contaminated sediments. | Permitting and public acceptance are expected implementability issues for on-site incineration. Flue gas and residual ash treatment will be required. Implementability of off-site incineration may be limited by transportation issues. | Moderate to very high processing costs. | No | Note: Remedial Technologies that are not retained in the screening are represented by the shading. Page 2 of 3 # Table 4-16
Effectiveness, Implementability, and Cost Evaluation Screening of Technologies | Technology/Process
Option | Description | Effectiveness | Implementability | Cost | Retained | |--|---|---|---|--|---| | Immobilization | Immobilization includes processes that physically or chemically reduce mobility of contaminants in a contaminated material through the addition of binding agents. <i>Ex situ</i> immobilization involves mixing setting agents such as cement, quicklime, grout, as well as reagents, with sediments in an immobilization system. Solidification can be combined with dechlorination (described above) to treat PCBs in sediments. | Potentially effective. May be difficult to determine whether remedial goals are attained because of PCBs tendency to adsorb to sediments so that leach test results may not differ between treated and untreated matrix. Solidification/stabilization can be applied for water absorption in dredged sediments for transport and landfill disposal. | Implementable. May result in significant increase in volume and weight of treated material. Treated material may still require landfill disposal because PCBs are not removed or destroyed. | Low to moderate processing costs, depending on sediment characteristics and type of additives and binders. | Not retained as
treatment option,
retained as
support
technology. | | Beneficial Use | | | | | | | Landfill Cover/
Construction Fill/Mine
Reclamation | These beneficial use options involve using dredged sediment in its original form, <i>i.e.</i> , the sediment may be treated to remove contaminants prior to being put to use, but its essential form will still be that of a sediment material. Options evaluated include cover material for solid waste landfill, fill material for construction projects, and fill material for abandoned mine land reclamation. | | Potential large volume may require implementation of more than one beneficial use option or to consider smaller components of the total dredged volume. Treatment may be required to meet certain criteria for disposal. | Low costs | Yes | | Manufacture of
Commercial Products | These technologies combine thermal treatment processes to destroy contaminants in sediments with some further physical/chemical process to convert the decontaminated sediment into a useable commercial product. The technologies evaluated involve production of cement, light weight aggregate, and glass tile from treated sediment. | Effective disposal option for dredged sediments. Thermal processes effectively destroy PCBs. All three options (i.e., production of cement, light weight aggregate, and glass tile) have been demonstrated at pilot scale, and are in the process or will be demonstrated at full-scale in the immediate future. | Implementable. The three options evaluated are process specific and offered by certain vendors. | Low to very high costs for processing. Potential recovery of processing costs through sale of useable product. | Yes | | Disposal | | | | | | | Land Disposal | Dredged sediment land disposal options evaluated include near river confined disposal facilities (CDFs) and off site landfills. CDFs can be upland (outside the river 100-year floodplain) or near-shore (within the 100-year floodplain or in shallow, non-navigation areas of the river). Landfills evaluated include off-site TSCA and non-TSCA facilities. | Effective disposal option for dredged sediments. | Siting of CDFs in the vicinity of the Upper Hudson River may be problematic because of potential large land area requirement and local residents opposition. Off-site landfill disposal of sediments requires dewatering and transportation to the landfill site. | Low to moderate costs for off-site landfill disposal. Low costs for disposal at CDFs. | Off site landfill disposal retained. Near river CDF disposal not retained. | Note: Remedial Technologies that are not retained in the screening are represented by the shading. Page 3 of 3 ## HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 6 - 6-1 Summary of Alternatives Screening Results - 6-2 Comparison of Remedial Alternatives by River Section - 6-3 Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated by Alternative Table 6-1 Summary of Alternatives Screening Results | | | | | | | | | | | PCBs in | PCBs in | Water | Weighted | Weighted | Weighted | | |------------------------------------|--------------|------------|------------|-----------|------------|----------|-----------|--------------|--------------|-------------|-------------|-------------|----------------|---------------|---------------|-----------| | | Total Area | | | | | | Length of | Mass of | Mass of | Water | Water | Column at | Average Fish | Average Fish | Average Fish | | | | Targeted for | Total Area | Volume | Volume | PCB Mass | PCB Mass | Shoreline | PCBs over | PCBs over | Column at | Column at | Federal Dam | Concentration | Concentration | Concentration | Keep for | | Alternative Name | Remediation | Capped | Remediated | Removed | Remediated | Removed | Disturbed | Federal Dam | Federal Dam | TID in 2011 | NUD in 2011 | in 2011 | in 2011 at TID | in 2011 at | in 2011 at | Detailed | | (Model Scenario) | (Acres) | (Acres) | (CY) | (CY) | (kg) | (kg) | (Miles) | in 2011 (kg) | in 2035 (kg) | (ng/L) | (ng/L) | (ng/L) | (mg/kg) | NUD (mg/kg) | Federal Dam | Analysis? | | No Action | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 103.8 | 62.5 | 20.78 | 21.64 | 8.61 | 2.98 | 3.69 | 0.52 | Yes | | Upper Bound Estimate of No Action | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | 4.33 | 5.91 | 0.52 | NA | | Monitored Natural Attenuation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 71.8 | 23.5 | 9.3 | 11.44 | 5.56 | 1.92 | 3.16 | 0.39 | Yes | | Upper Bound Estimate of MNA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | 3.40 | 5.81 | 0.39 | NA | | Capping with Dredging Alternatives | | | | | | | | | | | | | | | | | | CAP-0/MNA/MNA (R03S2) | 470 | 174 | 2,030,000 | 1,420,000 | 15,000 | 10,000 | 18.5 | 48.2 | 19.5 | 3.36 | 5.65 | 3.71 | 0.39 | 2.84 | 0.31 | No | | CAP-3/10/10 (R09S2) | 441 | 208 | 2,485,000 | 1,531,000 | 41,900 | 30,000 | 15.4 | 42.4 | 20.0 | 5.59 | 5.85 | 3.73 | 0.65 | 0.86 | 0.31 | Yes | | CAP-0/10/MNA (R02S2) | 544 | 226 | 2,568,000 | 1,711,000 | 38,600 | 26,300 | 21.5 | 36.4 | 18.4 | 3.36 | 4.09 | 3.24 | 0.40 | 0.77 | 0.29 | No | | CAP-0/10/10 (R06S2) | 641 | 226 | 2,999,000 | 2,100,000 | 45,300 | 33,000 | 23.9 | 35.7 | 18.4 | 3.38 | 4.07 | 3.19 | 0.40 | 0.77 | 0.29 | No | | Removal Alternatives | | | | | | | | | | | | | | | | | | REM-10/MNA/MNA (R10S2) | 150 | NA | 965,000 | 965,000 | 8,600 | 8,600 | 6.6 | 62.5 | 22.2 | 7.67 | 9.48 | 4.91 | 1.06 | 3.04 | 0.36 | No | | REM-0/MNA/MNA (R03S2) | 470 | NA | 2,030,000 | 2,030,000 | 15,000 | 15,000 | 18.5 | 48.2 | 19.5 | 3.36 | 5.65 | 3.71 | 0.39 | 2.84 | 0.31 | No | | REM-3/10/10 (R09S2) | 441 | NA | 2,485,000 | 2,485,000 | 41,900 | 41,900 | 15.4 | 42.4 | 20.0 | 5.59 | 5.85 | 3.73 | 0.65 | 0.86 | 0.31 | Yes | | REM-0/10/MNA (R02S2) | 544 | NA | 2,568,000 | 2,568,000 | 38,600 | 38,600 | 21.5 | 36.4 | 18.4 | 3.36 | 4.09 | 3.24 | 0.40 | 0.77 | 0.29 | No | | REM-0/10/10 (R06S2) | 641 | NA | 2,999,000 | 2,999,000 | 45,300 | 45,300 | 23.9 | 35.7 | 18.4 | 3.38 | 4.07 | 3.19 | 0.40 | 0.77 | 0.29 | No | | REM-0/0/3 (R08S2) | 920 | NA | 3,706,000 | 3,706,000 | 60,700 | 60,700 | 33.0 | 33.7 | 18.2 | 3.4 | 3.7 | 3.08 | 0.40 | 0.50 | 0.28 | Yes | #### Notes TID = Former Thompson Island Dam location (RM 188.5) (southern end of River Section 1) NUD = RM 182.6 (southern end of River Section 2) Federal Dam = RM 153.9 (southern end of River Section 3) PCB mass remediated and removed are total PCBs PCB mass over dams and concentrations are Tri+ congeners only (trichlorobiphenyls through decachlorobiphenyl homologues; excludes mono- and dichlorobiphenyls) All water column data are in ng/L (nanograms per liter, or parts per trillion by weight) Cumulative mass of PCBs over Federal Dam from modeling runs as specifed Model results (i.e., PCB mass over Federal Dam, PCB water column concentration, fish concentration) for REM alternatives also represent for CAP alternatives with equivalent target areas for screening-level evaluation. Table 6-2 Comparison of Remedial Alternatives by River Section | | | ediated (acre | , , | | Area Capp | ed (acres) -
Total Uppe | | ection and | Sediment Volume Removed (cy) - by River Section and Total Upper Hudson | | | | PCB Mass Removed (kg) - by River Section and Total Upper Hudson (2) | | | | |-----------------------|-----------------------|-----------------------|-----------------------|--|-----------------------
----------------------------|-----------|-----------------------------------|--|-----------------------|-----------------------|-------------------------------------|---|-----------|-----------|-------------------------------------| | Alternative Name | In River
Section 1 | In River
Section 2 | In River
Section 3 | In River
Sections
1, 2, and
3 | In River
Section 1 | In River
Section 2 | In River | In River
Sections
1, 2, and | In River
Section 1 | In River
Section 2 | In River
Section 3 | In River
Sections 1,
2, and 3 | In River
Section 1 | In River | In River | In River
Sections
1, 2, and 3 | | Capping with Dredging | | L. | Beetion 3 | | Section 1 | Beetion 2 | Beetion 3 | 3 | Section 1 | Section 2 | Beetion 3 | 2, and 3 | Section 1 | Section 2 | Beetion 3 | 1, 2, and 3 | | CAP-0/MNA/MNA | 470 | 0 | 0 | 470 | 174 | 0 | 0 | 174 | 1,420,000 | 0 | 0 | 1,420,000 | 10,000 | 0 | 0 | 10,000 | | CAP-3/10/10 | 270 | 74 | 97 | 441 | 156 | 52 | 0 | 208 | 850,000 | 292,000 | 389,000 | 1,531,000 | 7,000 | 16,300 | 6,700 | 30,000 | | CAP-0/10/MNA | 470 | 74 | 0 | 544 | 174 | 52 | 0 | 226 | 1,420,000 | 292,000 | 0 | 1,712,000 | 10,000 | 16,300 | 0 | 26,300 | | CAP-0/10/10 | 470 | 74 | 97 | 641 | 174 | 52 | 0 | 226 | 1,420,000 | 292,000 | 389,000 | 2,101,000 | 10,000 | 16,300 | 6,700 | 33,000 | | Removal Alternatives | | | | | | | | | | | | | 3 | | | | | REM-10/MNA/MNA | 150 | 0 | 0 | 150 | NA | NA | NA | NA | 965,000 | 0 | 0 | 965,000 | 8,600 | 0 | 0 | 8,600 | | REM-0/MNA/MNA | 470 | 0 | 0 | 470 | NA | NA | NA | NA | 2,030,000 | 0 | 0 | 2,030,000 | 15,000 | 0 | 0 | 15,000 | | REM-3/10/10 | 270 | 74 | 97 | 441 | NA | NA | NA | NA | 1,516,000 | 538,000 | 431,000 | 2,485,000 | 11,600 | 23,600 | 6,700 | 41,900 | | REM-0/10/MNA | 470 | 74 | 0 | 544 | NA | NA | NA | NA | 2,030,000 | 538,000 | 0 | 2,568,000 | 15,000 | 23,600 | 0 | 38,600 | | REM-0/10/10 | 470 | 74 | 97 | 641 | NA | NA | NA | NA | 2,030,000 | 538,000 | 431,000 | 2,999,000 | 15,000 | 23,600 | 6,700 | 45,300 | | REM-0/0/3 | 470 | 316 | 134 | 920 | NA | NA | NA | NA | 2,030,000 | 1,105,000 | 571,000 | 3,706,000 | 15,000 | 35,000 | 10,700 | 60,700 | Notes: TIP: Thompson Island Pool TID: Thompson Island Dam NUD: Northumberland Dam FD: Federal Dam RM: River Mile Table 6-3 Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated by Alternative | Alternative/River Section | Target Criteria | Area Re | emediated (Ad | cres) | Area (| Capped (Acre | s) | Volume Sec | liments Remo | oved (CY) | PCB Ma | ass Remediate | d (kg) | PCB N | Mass Removed | d (kg) | |---------------------------|-----------------------|-------------|---------------|-------|-------------|--------------|-------|-------------|--------------|-----------|-------------|---------------|-------------|-------------|--------------|-------------| | | | Contaminant | Channel | | | | | Removal | Dredging | Total | | CAP-3/10/Select | | | | | | | | | | | | | | | | | | River Section 1 | 3 g/m^2 | 266 | 15 | 282 | 156 | NA | 156 | 849,200 | 66,100 | 915,300 | 11,600 | 200 | 11,800 | 7,100 | 200 | 7,300 | | River Section 2 | 10 g/m^2 | 74 | 2 | 76 | 52 | NA | 52 | 292,000 | 15,400 | 307,400 | 23,600 | 700 | 24,300 | 15,600 | 700 | 16,300 | | River Section 3 | HS 36, 37, part of 39 | 92 | 43 | 135 | - | NA | - | 392,900 | 117,300 | 510,200 | 6,700 | 2,800 | 9,500 | 6,700 | 2,800 | 9,500 | | Total for Alternative | | 432 | 61 | 493 | 207 | NA | 207 | 1,534,100 | 198,800 | 1,732,900 | 41,900 | 3,700 | 45,600 | 29,400 | 3,700 | 33,100 | | REM-3/10/Select | | | | | | | | | | | | | | | | | | River Section 1 | 3 g/m^2 | 266 | 15 | 282 | NA | NA | - | 1,495,300 | 66,100 | 1,561,400 | 11,600 | 200 | 11,800 | 11,600 | 200 | 11,800 | | River Section 2 | 10 g/m^2 | 74 | 2 | 76 | NA | NA | - | 564,700 | 15,400 | 580,100 | 23,600 | 700 | 24,300 | 23,600 | 700 | 24,300 | | River Section 3 | HS 36, 37, part of 39 | 92 | 43 | 135 | NA | NA | - | 392,900 | 117,300 | 510,200 | 6,700 | 2,800 | 9,500 | 6,700 | 2,800 | 9,500 | | Total for Alternative | | 432 | 61 | 493 | NA | NA | - | 2,452,900 | 198,800 | 2,651,700 | 41,900 | 3,700 | 45,600 | 41,900 | 3,700 | 45,600 | | REM-0/0/3 | | | | | | | | | | | | | | | | | | River Section 1 | Full-Section | 470 | - | 470 | NA | NA | _ | 2,029,500 | - | 2,029,500 | 15,000 | - | 15,000 | 15,000 | - | 15,000 | | River Section 2 | Full-Section | 316 | - | 316 | NA | NA | - | 1,105,200 | - | 1,105,200 | >35,000 (1) | - | >35,000 (1) | >35,000 (1) | _ | >35,000 (1) | | River Section 3 | 3 g/m^2 | 134 | 43 | 177 | NA | NA | - | 571,100 | 117,300 | 688,400 | 10,700 | 2,800 | 13,500 | 10,700 | 2,800 | 13,500 | | Total for Alternative | | 921 | 43 | 964 | NA | NA | - | 3,705,800 | 117,300 | 3,823,100 | >60,700 | 2,800 | >63,500 | >60,700 | 2,800 | >63,500 | #### Note: ¹ This estimate combines the 1994 data for areas >3g/m^2 with the 1977 data for areas <3g/m^2. Because of the uncertainties associated with the 1977 data (*i.e.*, shallow coring depths and potential sediment inventory changes), one half of the mass estimated from the 1977 data (3.65 of 7.3 metric tons) was used as a part of the lower bound estimate given here. ## HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 7 - 7-1 Time Frame Used to Calculate Risks and Hazards - 7-2 Values Used for Daily Intake Calculations Upper Hudson River Fish Adult Angler - 7-3 Modeled Post-Remediation PCB Concentrations in Fish Upper Hudson River - 7-4 Species-Weighted Fish Fillet Average PCB Concentration - 7-5 Years to Achieve Human Health Based Target Levels Comparison of Alternatives Upper Hudson River - 7-6a Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency Upper Hudson River Fish Adult Angler - 7-6b Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency River Section 1 Thompson Island Pool Adult Angler - 7-6c Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency River Section 2 Adult Angler - 7-6d Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency River Section 3 Lock 5 to Troy Dam Adult Angler - 7-7a Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency Upper Hudson River Fish Adult Angler - 7-7b Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 1 Thompson Island Pool Adult Angler - 7-7c Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 2 Adult Angler - 7-7d Long-Term Fish Ingestion Non-Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 3 Lock 5 to Troy Dam Adult Angler - 7-8 Time to Reach Ecological Target Concentrations - 7-9 Average of PCB Toxicity Quotients Ecological Receptors (25-Year Time Frame) - 7-10 Probabilistic Dose-Response Analysis Selected Output for Probability of Reduction of Fecundity of the Female River Otter River Section 1 - 7-11 Probabilistic Dose-Response Analysis Selected Output for Probability of Reduction of Fecundity of the Female River Otter River Section 2 - 7-12 Reduction in Ecological Toxicity Quotients as Compared to the No Action and MNA Alternatives Table 7-1 Time Frame Used to Calculate Risks and Hazards | Human Health
Exposure Modeled | d Cancer RME | | Cancer CT/No | on-Cancer CT | Non-Cancer CT | | | | |---|-------------------------------------|------------------------|-------------------------------------|------------------------|-------------------------------------|------------------------|--|--| | Time Frame | | | 12 y | ears | 7 years | | | | | | No Action, MNA,
CAP-3/10/S, REM- | No Action, MNA, | No Action, MNA,
CAP-3/10/S, REM- | No Action, MNA, | No Action, MNA,
CAP-3/10/S, REM- | No Action, MNA, | | | | | 3/10/S, and all sensitivity runs | and REM-0/0/3 | 3/10/S, and all sensitivity runs | and REM-0/0/3 | 3/10/S, and all sensitivity runs | and REM-0/0/3 | | | | River Section 1 | 2008-2047 | 2009-2048 | 2008-2019 | 2009-2020 | 2008-2014 | 2009-2015 | | | | River Section 2 | 2009-2048 | 2011-2050 | 2009-2020 | 2011-2022 | 2009-2015 | 2011-2017 | | | | River Section 3
Upper Hudson Average | 2010-2049
2009-2048 | 2012-2051
2011-2050 | 2010-2021
2009-2020 | 2012-2023
2011-2022 | 2010-2016
2009-2015 | 2012-2018
2011-2017 | | | | | Ecological | | | | | | | | |---|---|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--| | | Exposure Modeled | Bald Eagle and Eagle Egg | | Mi | ink | River Otter | | | | | Time Frame | ne 25 years | | 25 y | ears | 25 y | rears | | | | | No Action, MNA,
CAP-3/10/S, REM-
3/10/S, and all
sensitivity runs | No Action, MNA,
and REM-0/0/3 | No Action, MNA,
CAP-3/10/S, REM-
3/10/S, and all
sensitivity runs | No Action, MNA,
and REM-0/0/3 | No Action, MNA,
CAP-3/10/S, REM-
3/10/S, and all
sensitivity runs | No Action, MNA,
and REM-0/0/3 | | |] | River Section 1
River Section 2
River Section 3 | 2008-2032
2009-2033
2010-2034 | 2009-2033
2011-2035
2012-2036 | 2008-2032
2009-2033
2010-2034 | 2009-2033
2011-2035
2012-2036 | 2008-2032
2009-2033
2010-2034 | 2009-2033
2011-2035
2012-2036 | | Table 7-2 Values Used For Daily Intake Calculations Upper Hudson River Fish - Adult Angler Scenario Timeframe:
Post-Remediation Medium: Fish Exposure Medium: Fish Exposure Point: Upper Hudson Fish Receptor Population: Angler Receptor Age: Adult | Exposure Route | Parameter
Code | Parameter Definition | Units | RME
Value | RME
Rationale/
Reference | CT
Value | CT
Rationale/
Reference | Intake Equation/
Model Name | |----------------|-----------------------|--|------------------|--------------|---|-------------|---|---| | Ingestion | C _{fish} -C | PCB Concentration in Fish (Cancer) | mg/kg wet weight | variable | Range in Upper Hudson | variable | Range in Upper Hudson | Average Daily Intake (mg/kg-day) = | | | C _{fish} -NC | PCB Concentration in Fish (Non-cancer) | mg/kg wet weight | variable | Range in Upper Hudson | variable | Range in Upper Hudson | C_{fish} x IR_{fish} x (1 - Loss) X FS x EF x ED x CF x 1/BW x 1/AT | | | IR_{fish} | Ingestion Rate of Fish | grams/day | 31.9 | 90th percentile value, based on
1991 NY Angler survey. | 4.0 | 50th percentile value, based on
1991 NY Angler survey. | | | | Loss | Cooking Loss | g/g | 0 | Assumes 100% PCBs remains in fish. | 0.2 | Assumes 20% PCBs in fish is lost through cooking. | | | | FS | Fraction from Source | unitless | 1 | Assumes 100% fish ingested is from Upper Hudson. | 1 | Assumes 100% fish ingested is from Upper Hudson. | | | | EF | Exposure Frequency | days/year | 365 | Fish ingestion rate already averaged over one year. | 365 | Fish ingestion rate already averaged over one year. | | | | ED | Exposure Duration (Cancer) | years | 40 | 95th percentile value, based on
1991 NY Angler and 1990 US
Census data. | 12 | 50th percentile value, based on
1991 NY Angler and 1990 US
Census data. | | | | ED | Exposure Duration (Noncancer) | years | 7 | Based on the maximum chronic
exposure PCB concentration
(see HHRA for details). | 12 | 50th percentile value, based on
1991 NY Angler and 1990 US
Census data. | | | | CF | Conversion Factor | kg/g | 1.00E-03 | | 1.00E-03 | | | | | BW | Body Weight | kg | 70 | Mean adult body weight, males and females (USEPA, 1989b). | 70 | Mean adult body weight, males and females (USEPA, 1989b). | | | | AT-C | Averaging Time (Cancer) | days | 25,550 | 70-year lifetime exposure x 365 d/yr (USEPA, 1989b). | 25,550 | 70-year lifetime exposure x 365 d/yr (USEPA, 1989b). | | | | AT-NC | Averaging Time (Noncancer) | days | 2,555 | ED (years) x 365 days/year. | 4,380 | ED (years) x 365 days/year. | | Note: Species-weighted fish PCB concentration averaged over river location. Table 7-3 Modeled Post-Remediation PCB Concentrations in Fish Upper Hudson River | RM 189 | (mg/kg wet weig
Species
Start Year 2009) | gnt) | | | | | Species-weighted Concentration (mg/kg wet weight) | | | | | |------------------------|--|-----------|--------------|---------|---------|---------------|---|------------------|------------------|--|--| | No Action (i
RM 189 | | | | | | ~ | | | | | | | RM 189 | Start Year 2009) | | Min | Mean | Max | C RME (40-yr) | C CT
(12-yr) | NC RME
(7-yr) | NC CT
(12-yr) | | | | | | | | | | | | | | | | | DM 104 | Brown Bullhead | 44% | 0.8-2.1 | 2.0-3.6 | 6.9-7.2 | 2.2-3.4 | 3.0-4.2 | 3.0-4.3 | 3.0-4.2 | | | | DM 104 | Largemouth Bass | 47% | 1.8-2.2 | 2.9-3.4 | 6.6 | | | | | | | | D3.6.40.4 | Yellow Perch | 9% | 1.5-2.0 | 2.8-3.3 | 6.7 | | | | | | | | L 1/1 V/1 | Brown Bullhead | 44% | 1.2-3.6 | 3.3-6.4 | 13 | 1.9-4.4 | 3.1-5.5 | 3.5-5.8 | 3.1-5.5 | | | | RM 184 | Largemouth Bass | 47% | 0.8-1.9 | 1.8-3.1 | 7.2 | 1.9-4.4 | 3.1-3.3 | 3.3-3.6 | 3.1-3.3 | | | | | Yellow Perch | 9% | 0.6-1.5 | 1.4-2.6 | 5.3-5.4 | RM 154 | Brown Bullhead | 44% | 0.3-0.2 | 0.5 | 1.9 | 0.33 | 0.44 | 0.48 | 0.44 | | | | | Largemouth Bass | 47% | 0.2 | 0.4 | 1.3 | | | | | | | | | Yellow Perch | 9% | 0.1 | 0.3 | 1.0 | | | | | | | | | son River Average (| | | and 3) | | 1.5-2.7 | 2.2-3.4 | 2.3-3.5 | 2.2-3.4 | | | | | Natural Attenuation | | | | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.2-1.8 | 1.4-3.3 | 6.9-7.2 | 1.0-2.3 | 1.8-3.1 | 1.9-3.3 | 1.8-3.1 | | | | | Largemouth Bass | 47% | 0.3-0.8 | 1.3-1.9 | 6.6 | | | | | | | | | Yellow Perch | 9% | 0.3-0.9 | 1.3-1.9 | 6.7 | | | | | | | | RM 184 | Brown Bullhead | 44% | 0.2-3.5 | 2.4-6.4 | 13 | 1.2-4.2 | 2.5-5.4 | 3.0-5.7 | 2.5-5.4 | | | | | Largemouth Bass | 47% | 0.1 - 1.7 | 1.3-3.0 | 7.2 | | | | | | | | | Yellow Perch | 9% | 0.1-1.4 | 1.0-2.5 | 5.3-5.4 | | | | | | | | RM 154 | Brown Bullhead | 44% | 0.1 | 0.3 | 1.9 | 0.16 | 0.29 | 0.35 | 0.29 | | | | KWI 134 | Largemouth Bass | 47% | 0.0 | 0.3 | 1.3 | 0.10 | 0.27 | 0.55 | 0.27 | | | | | Yellow Perch | 9% | 0.0 | 0.2 | 1.0 | | | | | | | | Unner Huds | son River Average (| | | | 1.0 | 0.76 | 1.50 | 1.75 | 1.50 | | | | | Start Year 2011) | taver be | ctions 1, 2, | una o) | | 0.70 | 1.50 | 1.75 | 1.50 | | | | RM 189 | Brown Bullhead | 44% | 0.8-2.1 | 2.0-3.6 | 6.9-7.2 | 2.1-3.2 | 2.7-3.9 | 2.8-4.0 | 2.7-3.9 | | | | 10, | Largemouth Bass | 47% | 1.8-2.2 | 2.9-3.4 | 6.6 | 211 012 | 2., 5., | 2.0 | 2 0 | | | | | Yellow Perch | 9% | 1.5-2.0 | 2.8-3.3 | 6.7 | RM 184 | Brown Bullhead | 44% | 1.2-3.6 | 3.3-6.4 | 13 | 1.8-4.2 | 2.8-5.2 | 3.1-5.5 | 2.8-5.2 | | | | | Largemouth Bass | 47% | 0.8-1.9 | 1.8-3.1 | 7.2 | | | | | | | | | Yellow Perch | 9% | 0.6-1.5 | 1.4-2.6 | 5.3-5.4 | | | | | | | | RM 154 | Brown Bullhead | 44% | 0.3 | 0.5 | 1.9 | 0.31 | 0.40 | 0.42 | 0.40 | | | | | Largemouth Bass | 47% | 0.2 | 0.4 | 1.3 | | | | | | | | | Yellow Perch | 9% | 0.1 | 0.3 | 1.0 | | | | | | | | Upper Huds | son River Average (| River Se | ctions 1, 2, | and 3) | | 1.40 | 1.96 | 2.10 | 1.96 | | | | | Natural Attenuation | | Year 2011) | | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.2-1.8 | 1.4-3.3 | 6.9-7.2 | 0.9-2.2 | 1.5-2.9 | 1.7-3.1 | 1.5-2.9 | | | | | Largemouth Bass | 47% | 0.3-0.8 | 1.3-1.9 | 6.6 | | | | | | | | | Yellow Perch | 9% | 0.3-0.9 | 1.3-1.9 | 6.7 | | | | | | | | RM 184 | Brown Bullhead | 44% | 0.2-3.5 | 2.4-6.4 | 13 | 1.0-4.1 | 2.1-5.1 | 2.5-5.4 | 2.1-5.1 | | | | - | Largemouth Bass | 47% | 0.1-1.7 | 1.3-3.0 | 7.2 | | | | | | | | | Yellow Perch | 9% | 0.1-1.4 | 1.0-2.5 | 5.3-5.4 | | | | | | | | DM 154 | | | | | | 0.14 | 0.24 | 0.20 | 0.24 | | | | RM 154 | Brown Bullhead | 44% | 0.1 | 0.3 | 1.9 | 0.14 | 0.24 | 0.28 | 0.24 | | | | | Largemouth Bass | 47%
9% | 0.0 | 0.2 | 1.3 | | | | | | | | | Yellow Perch
son River Average (1 | | 0.0 | 0.2 | 1.0 | 0.67 | 1.28 | 1.48 | 1.28 | | | Page 1 of 3 TAMS Table 7-3 Modeled Post-Remediation PCB Concentrations in Fish Upper Hudson River | | PCB Concentrations | | | | | Spec | _ | ed Concentr | ation | |-----------|------------------------|------------|--------------|----------|------------|---------|----------|-------------|---------| | | (mg/kg wet weig | ht) | | | | | (mg/kg v | vet weight) | | | | | | | | | C RME | C CT | NC RME | NC CT | | Location | Species | | Min | Mean | Max | (40-yr) | (12-yr) | (7-yr) | (12-yr) | | CAP-3/10/ | Select (Start Year 200 | 09) | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.9 | 6.9 | 0.46 | 0.68 | 0.74 | 0.68 | | | Largemouth Bass | 47% | 0.3 | 1.0 | 6.6 | | | | | | | Yellow Perch | 9% | 0.3 | 1.0 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.7 | 13 | 0.46 | 0.85 | 0.99 | 0.85 | | KW1 104 | Largemouth Bass | 47% | 0.2 | 0.9 | 7.2 | 0.40 | 0.63 | 0.99 | 0.03 | | | Yellow Perch | 9% | 0.1 | 0.7 | 5.3 | | | | | | | | | | | | | | | | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.11 | 0.19 | 0.24 | 0.19 | | | Largemouth Bass | 47% | 0.0 | 0.2 | 1.3 | | | | | | | Yellow Perch | 9% | 0.0 | 0.1 | 1.0 | | | | | | | lson River Average (I | | etions 1, 2, | and 3) | | 0.34 | 0.58 | 0.65 | 0.58 | | | Select 15% (Start Yea | | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.9 | 6.9 | 0.48 | 0.74 | 0.81 | 0.74 | | | Largemouth Bass | 47% | 0.3 | 1.1 | 6.6 | | | | | | | Yellow Perch | 9% | 0.3 | 1.0 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.7 | 13 | 0.49 | 0.90 | 1.05 | 0.90 | | KWI 184 | Largemouth Bass | 44%
47% | 0.2 | 0.9 | 7.2 | 0.49 | 0.90 | 1.05 | 0.90 | | | Yellow Perch | 9% | 0.1 | 0.9 | 7.2
5.3 | | | | | | | Tellow Felcit | 3 /0 | 0.1 | 0.7 | 5.5 | | | | | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.11 | 0.20 | 0.24 | 0.20 | | KWI 134 | Largemouth Bass | 47% | 0.0 | 0.2 | 1.3 | 0.11 | 0.20 | 0.24 | 0.20 | | | Yellow Perch | 9% | 0.0 | 0.1 | 1.0 | | | | | | Unner Hud | dson River Average (I | | | | | 0.36 | 0.61 | 0.70 | 0.61 | | | Select 25% (Start Yea | | | <u> </u> | | 0.00 | 0.01 | 0.70 | 0.01 | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.9 | 6.9 | 0.52 | 0.82 | 0.91 | 0.82 | | | Largemouth Bass | 47% | 0.3 | 1.1 | 6.6 | | | | **** | | | Yellow Perch | 9% | 0.3 | 1.0 | 6.7 | | | | | | | | | | | | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.8 | 13 | 0.55 | 1.04 | 1.22 | 1.04 | | | Largemouth Bass | 47% | 0.1 | 1.0 | 7.2 | | | | | | | Yellow Perch | 9% | 0.1 | 8.0 | 5.3 | | | | | | | | | | | | | | | | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.12 | 0.20 | 0.25 | 0.20 | | | Largemouth Bass | 47% | 0.0 | 0.2 | 1.3 | | | | | | | Yellow Perch | 9% | 0.0 | 0.1 | 1.0 | | | | | | | lson River Average (I | River Sec | etions 1, 2, | and 3) | | 0.40 | 0.69 | 0.79 | 0.69 | | REM-3/10/ | | 4.4=- | 0.1 | 0.0 | 4.0 | 0.15 | 0 | 0.72 | 0 | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.9 | 6.9 | 0.45 | 0.66 | 0.72 | 0.66 | | | Largemouth Bass | 47% | 0.3 | 1.0 | 6.6 | | | | | | | Yellow Perch | 9% | 0.3 | 1.0 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.6 | 13 | 0.39 | 0.68 | 0.77 | 0.68 | | |
Largemouth Bass | 47% | 0.1 | 0.9 | 7.2 | | | | | | | Yellow Perch | 9% | 0.1 | 0.7 | 5.3 | | | | | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.11 | 0.19 | 0.23 | 0.19 | | 12171 137 | Largemouth Bass | 47% | 0.0 | 0.3 | 1.3 | 0.11 | 0.19 | 0.23 | 0.17 | | | Yellow Perch | 9% | 0.0 | 0.2 | 1.0 | | | | | | Unnon Hue | dson River Average (I | | | | 1.0 | 0.32 | 0.51 | 0.57 | 0.51 | Page 2 of 3 TAMS Table 7-3 Modeled Post-Remediation PCB Concentrations in Fish Upper Hudson River | | PCB Concentrations
(mg/kg wet wei | | | | | Spec | _ | ed Concentra
vet weight) | ation | |-----------|--------------------------------------|------------|--------------|---------------|------------|------------------|--------------|-----------------------------|------------------| | Location | Species | | Min | Mean | Max | C RME
(40-yr) | C CT (12-yr) | NC RME
(7-yr) | NC CT
(12-yr) | | REM-3/10 | /S (0 ppm) | | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.9 | 6.9 | 0.42 | 0.59 | 0.63 | 0.59 | | | Largemouth Bass | 47% | 0.3 | 1.0 | 6.6 | | | | | | | Yellow Perch | 9% | 0.3 | 1.0 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.6 | 13 | 0.36 | 0.60 | 0.68 | 0.60 | | | Largemouth Bass | 47% | 0.1 | 0.9 | 7.2 | | | | **** | | | Yellow Perch | 9% | 0.1 | 0.7 | 5.3 | | | | | | RM 154 | Dunaran Darlihan d | 4.40/ | 0.0 | 0.2 | 1.0 | 0.11 | 0.10 | 0.22 | 0.10 | | KWI 154 | Brown Bullhead | 44%
47% | 0.0 | 0.3
0.2 | 1.9
1.3 | 0.11 | 0.18 | 0.22 | 0.18 | | | Largemouth Bass
Yellow Perch | 47%
9% | 0.0 | 0.2 | 1.0 | | | | | | Unner Hu | dson River Average (| | | | 1.0 | 0.29 | 0.46 | 0.51 | 0.46 | | REM-3/10 | | 11111 56 | | anu <i>3)</i> | | 0.23 | 0.40 | 0.31 | 0.40 | | RM 189 | Brown Bullhead | 44% | 0.1 | 1.0 | 6.9 | 0.60 | 1.0 | 1.1 | 1.0 | | KWI 107 | Largemouth Bass | 47% | 0.3 | 1.1 | 6.6 | 0.00 | 1.0 | 1.1 | 1.0 | | | Yellow Perch | 9% | 0.3 | 1.1 | 6.7 | | | | | | D3 f 404 | | | | | | 0.54 | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.8 | 13 | 0.56 | 1.1 | 1.2 | 1.1 | | | Largemouth Bass
Yellow Perch | 47% | 0.1 | 1.0 | 7.2 | | | | | | | renow Perch | 9% | 0.1 | 0.8 | 5.3 | | | | | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.12 | 0.21 | 0.26 | 0.21 | | | Largemouth Bass | 47% | 0.0 | 0.2 | 1.3 | | | | | | | Yellow Perch | 9% | 0.0 | 0.1 | 1.0 | | | | | | | dson River Average (| River Sec | ctions 1, 2, | and 3) | | 0.42 | 0.76 | 0.88 | 0.76 | | REM-3/10 | | | | | | | | | | | RM 189 | Brown Bullhead | 44% | 0.1 | 1.2 | 6.9 | 0.80 | 1.5 | 1.7 | 1.5 | | | Largemouth Bass | 47% | 0.3 | 1.2 | 6.6 | | | | | | | Yellow Perch | 9% | 0.3 | 1.2 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 2.0 | 13 | 0.78 | 1.6 | 1.9 | 1.6 | | | Largemouth Bass | 47% | 0.1 | 1.1 | 7.2 | | | | | | | Yellow Perch | 9% | 0.1 | 0.9 | 5.3 | | | | | | RM 154 | Brown Bullhead | 44% | 0.1 | 0.3 | 1.9 | 0.14 | 0.24 | 0.29 | 0.24 | | | Largemouth Bass | 47% | 0.0 | 0.2 | 1.3 | | | | | | | Yellow Perch | 9% | 0.0 | 0.2 | 1.0 | | | | | | Upper Hu | dson River Average (| River Sec | ctions 1, 2, | and 3) | | 0.57 | 1.09 | 1.29 | 1.09 | | REM-0/0/3 | | | | * | | | | | | | RM 189 | Brown Bullhead | 44% | 0.1 | 0.8 | 6.9 | 0.34 | 0.42 | 0.42 | 0.42 | | | Largemouth Bass | 47% | 0.3 | 1.0 | 6.6 | | | | | | | Yellow Perch | 9% | 0.2 | 0.9 | 6.7 | | | | | | RM 184 | Brown Bullhead | 44% | 0.2 | 1.6 | 13 | 0.25 | 0.38 | 0.42 | 0.38 | | | Largemouth Bass | 47% | 0.1 | 0.9 | 7.2 | 0.23 | 0.50 | 0.12 | 0.50 | | | Yellow Perch | 9% | 0.1 | 0.7 | 5.3 | | | | | | DM 154 | | | | | | 0.00 | 0.12 | 0.16 | 0.12 | | RM 154 | Brown Bullhead | 44% | 0.0 | 0.3 | 1.9 | 0.08 | 0.13 | 0.16 | 0.13 | | | Largemouth Bass
Yellow Perch | 47%
9% | 0.0 | 0.2
0.1 | 1.3
1.0 | | | | | | Unner U | | | | | 1.0 | 0.22 | 0.21 | 0.22 | 0.21 | | opper Hu | dson River Average (| vivel 960 | zuons 1, 2, | , anu 3) | | 0.22 | 0.31 | 0.33 | 0.31 | Notes: Ranges of bounding estimate concetrations are presented for the No action and MNA alternatives. There is no bounding range presented for the No Action and MNA alternatives in River Section 3 because there are no cohesive sediments in this segment and therefore no bounding range could be calculated. C RME: Cancer - Reasonable Maximum Exposure C CT: Cancer - Central Tendency NC RME: Non-Cancer - Reasonable Maximum Exposure NC CT: Non-Cancer - Central Tendency Page 3 of 3 TAMS Table 7-4 Species-Weighted Fish Fillet Average PCB Concentration (in mg/kg) | | II | | | | | | | | ies Weighten | Fish Fillet Ave | • | • | IIIg/Kg) | G. D. G. (G.) | | ı | P | | 1 | P | | |--------------|-----------------|------------------------------|-----------------|-----------------|--|------------------------------|-----------------|------------------------|-----------------------|-----------------|--------------------------------------|-----------------------|-----------------------|------------------------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------|------------------------------|-----------------------| | | River Section 1 | No Action
River Section 2 | River Section 3 | River Section 1 | ed Upper Bound of N
River Section 2 | No Action
River Section 3 | River Section 1 | MNA
River Section 2 | River Section 3 | River Section 1 | ted Upper Bound o
River Section 2 | River Section 3 | River Section 1 | CAP-3/10/Select
River Section 2 | River Section 3 | River Section 1 | REM-3/10/Selection 2 | River Section 3 | River Section 1 | REM-0/0/3
River Section 2 | River Section 3 | | Year | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | (RM 189) | (RM 184) | (RM 154) | | 1998 | 6.774 | 9.659 | 1.529 | 6.801 | 9.747 | 1.529 | 6.774 | 9.659 | 1.529 | 6.801 | 9.747 | 1.529 | 6.774 | 9.659 | 1.529 | 6.774 | 9.659 | 1.529 | 6.774 | 9.659 | 1.529 | | 1999
2000 | 6.621
5.563 | 8.877
8.028 | 1.501
1.292 | 6.796
5.917 | 9.253
8.870 | 1.501
1.292 | 6.621
5.563 | 8.877
8.028 | 1.501
1.292 | 6.796
5.917 | 9.253
8.870 | 1.501
1.292 | 6.621
5.563 | 8.877
8.028 | 1.501
1.292 | 6.621
5.563 | 8.877
8.028 | 1.501
1.292 | 6.621
5.563 | 8.877
8.028 | 1.501
1.292 | | 2000 | 4.924 | 7.210 | 1.171 | 5.535 | 8.445 | 1.171 | 4.924 | 7.210 | 1.171 | 5.535 | 8.445 | 1.171 | 4.924 | 7.210 | 1.171 | 4.924 | 7.210 | 1.171 | 4.924 | 7.210 | 1.171 | | 2002 | 4.705 | 6.571 | 1.047 | 5.447 | 8.072 | 1.047 | 4.705 | 6.571 | 1.047 | 5.447 | 8.072 | 1.047 | 4.705 | 6.571 | 1.047 | 4.705 | 6.571 | 1.047 | 4.705 | 6.571 | 1.047 | | 2003 | 4.290 | 6.090 | 0.980 | 5.117 | 7.708 | 0.980 | 4.290 | 6.090 | 0.980 | 5.117 | 7.708 | 0.980 | 4.290 | 6.088 | 0.980 | 4.290 | 6.088 | 0.980 | 4.290 | 6.088 | 0.980 | | 2004 | 5.025
4.368 | 5.958
5.647 | 0.948
0.857 | 5.982
5.364 | 7.519
7.219 | 0.948
0.857 | 5.084
3.739 | 5.934
5.523 | 0.942
0.812 | 6.030
4.763 | 7.520
7.200 | 0.942
0.812 | 5.027
3.454 | 5.923
5.461 | 0.937
0.797 | 5.021
3.435 | 5.922
5.456 | 0.937
0.795 | 5.014
3.475 | 5.921
5.445 | 0.937
0.792 | | 2006 | 3.691 | 5.171 | 0.778 | 4.756 | 6.914 | 0.778 | 2.890 | 4.904 | 0.716 | 3.971 | 6.814 | 0.716 | 1.837 | 4.037 | 0.687 | 1.753 | 3.893 | 0.685 | 1.923 | 4.765 | 0.676 | | 2007
2008 | 4.023
3.982 | 4.848
4.596 | 0.736
0.684 | 5.148
5.214 | 6.716
6.505 | 0.736
0.684 | 2.862
2.774 | 4.489
4.168 | 0.654
0.586 | 4.083
4.090 | 6.599 | 0.654
0.586 | 1.077
1.013 | 2.161
1.424 | 0.610
0.532 | 0.972
0.911 | 1.869
1.092 | 0.606
0.526 | 1.014
0.581 | 4.165
2.881 | 0.595
0.518 | | 2008 | 3.887 | 4.377 | 0.637 | 5.106 | 6.344 | 0.637 | 2.616 | 3.877 | 0.519 | 3.958 | 6.390 | 0.519 | 0.988 | 1.424 | 0.332 | 0.894 | 0.972 | 0.326 | 0.552 | 1.236 | 0.432 | | 2010 | 3.613 | 4.070 | 0.564 | 4.885 | 6.171 | 0.564 | 2.321 | 3.533 | 0.440 | 3.722 | 6.033 | 0.440 | 0.909 | 1.178 | 0.370 | 0.824 | 0.906 | 0.362 | 0.510 | 0.585 | 0.343 | | 2011 | 2.982 | 3.690 | 0.519 | 4.330 | 5.908 | 0.519 | 1.921 | 3.164 | 0.388 | 3.399 | 5.810 | 0.388 | 0.711 | 1.056 | 0.314 | 0.642 | 0.815 | 0.305 | 0.400 | 0.517 | 0.283 | | 2012 | 2.899 | 3.445 | 0.451 | 4.242 | 5.767 | 0.451 | 1.851 | 2.879 | 0.324 | 3.308 | 5.651 | 0.324 | 0.717 | 0.975 | 0.254 | 0.652 | 0.759 | 0.247 | 0.412 | 0.480 | 0.226 | | 2013 | 2.574 | 3.155 | 0.416 | 3.848 | 5.552 | 0.416 | 1.682 | 2.601 | 0.287 | 3.068 | 5.467 | 0.287 | 0.591 | 0.883 | 0.219 | 0.537 | 0.689 | 0.212 | 0.344 | 0.435 | 0.191 | | 2014 | 2.741 | 2.976 | 0.392 | 3.877 | 5.415 | 0.392 | 1.666 | 2.396 | 0.258 | 2.968 | 5.314 | 0.258 | 0.603 | 0.822 | 0.192 | 0.555 | 0.645 | 0.185 | 0.371 | 0.407
0.384 | 0.164 | | 2015
2016 | 2.558
2.831 | 2.833 | 0.378
0.382 | 3.701
4.024 | 5.267
5.175 | 0.378 | 1.535
1.610 | 2.229
2.126 | 0.237
0.231 | 2.837
2.963 | 5.171 | 0.237
0.231 | 0.548
0.627 | 0.771
0.749 | 0.173
0.167 | 0.506
0.584 | 0.607 | 0.167
0.160 | 0.345 | 0.384 | 0.146
0.139 | | 2017 | 2.970 | 2.683 | 0.384 | 4.161 | 5.128 | 0.384 | 1.573 | 1.978 | 0.221 | 2.928 | 4.995 | 0.221 | 0.667 | 0.712 | 0.158 | 0.625 | 0.573 | 0.151 | 0.441 | 0.367 | 0.129 | | 2018 | 2.757 | 2.495 | 0.382 | 3.938 | 5.027 | 0.382 | 1.437 | 1.765 | 0.210 | 2.813 | 4.903 | 0.210 | 0.611 | 0.658 | 0.147 | 0.573 | 0.537 | 0.141 | 0.405 | 0.352 | 0.119 | | 2019
2020 | 3.071
2.699 | 2.395
2.253 | 0.377
0.361 | 4.222
3.836 | 4.977
4.867 | 0.377
0.361 | 1.497
1.270 | 1.619
1.480 | 0.200
0.182 | 2.861
2.611 | 4.824
4.736 | 0.200
0.182 | 0.688
0.582 | 0.624
0.582 | 0.139
0.126 | 0.651
0.551 | 0.520
0.487 | 0.133
0.120 | 0.474 | 0.346
0.326 | 0.112
0.100 |
| 2020 | 2.099 | 2.233 | 0.355 | 3.451 | 4.729 | 0.355 | 1.270 | 1.365 | 0.171 | 2.470 | 4.624 | 0.162 | 0.382 | 0.538 | 0.126 | 0.331 | 0.487 | 0.120 | 0.407 | 0.326 | 0.100 | | 2022 | 2.397 | 2.089 | 0.359 | 3.582 | 4.653 | 0.359 | 1.093 | 1.296 | 0.166 | 2.469 | 4.539 | 0.166 | 0.497 | 0.518 | 0.114 | 0.472 | 0.437 | 0.109 | 0.357 | 0.296 | 0.090 | | 2023 | 2.559 | 2.037 | 0.360 | 3.723 | 4.609 | 0.360 | 1.088 | 1.225 | 0.158 | 2.452 | 4.477 | 0.158 | 0.532 | 0.497 | 0.108 | 0.509 | 0.421 | 0.104 | 0.390 | 0.289 | 0.085 | | 2024 | 2.230 | 1.930 | 0.325 | 3.387 | 4.529 | 0.325 | 0.939 | 1.123 | 0.139 | 2.316 | 4.397 | 0.139 | 0.458 | 0.465 | 0.095 | 0.438
0.397 | 0.396 | 0.091 | 0.339 | 0.275 | 0.074 | | 2025
2026 | 2.022
1.829 | 1.788
1.736 | 0.315
0.316 | 3.191
3.006 | 4.399
4.336 | 0.315
0.316 | 0.842
0.757 | 1.019
0.952 | 0.129
0.124 | 2.227
2.135 | 4.307
4.231 | 0.129
0.124 | 0.414
0.360 | 0.426
0.406 | 0.089
0.085 | 0.397 | 0.365
0.351 | 0.085
0.082 | 0.309
0.270 | 0.254
0.248 | 0.070
0.067 | | 2020 | 2.503 | 1.765 | 0.310 | 3.609 | 4.332 | 0.321 | 0.737 | 0.932 | 0.124 | 2.247 | 4.188 | 0.124 | 0.496 | 0.406 | 0.083 | 0.478 | 0.353 | 0.082 | 0.386 | 0.254 | 0.066 | | 2028 | 2.617 | 1.726 | 0.303 | 3.710 | 4.290 | 0.303 | 0.863 | 0.875 | 0.111 | 2.205 | 4.133 | 0.111 | 0.512 | 0.392 | 0.077 | 0.496 | 0.343 | 0.074 | 0.413 | 0.248 | 0.061 | | 2029 | 2.185 | 1.613 | 0.298 | 3.269 | 4.155 | 0.298 | 0.720 | 0.801 | 0.105 | 2.062 | 4.050 | 0.105 | 0.412 | 0.363 | 0.074 | 0.400 | 0.319 | 0.071 | 0.332 | 0.232 | 0.059 | | 2030 | 1.743
2.132 | 1.541 | 0.302
0.289 | 2.877
3.245 | 4.090
4.071 | 0.302
0.289 | 0.620
0.679 | 0.735
0.675 | 0.103
0.095 | 1.982
2.012 | 3.982
3.929 | 0.103
0.095 | 0.330
0.416 | 0.341
0.326 | 0.073
0.068 | 0.319
0.404 | 0.302
0.292 | 0.070 | 0.261 | 0.224
0.220 | 0.059
0.055 | | 2031 | 1.933 | 1.412 | 0.289 | 3.043 | 3.972 | 0.285 | 0.602 | 0.610 | 0.093 | 1.929 | 3.856 | 0.093 | 0.416 | 0.302 | 0.066 | 0.354 | 0.292 | 0.064 | 0.300 | 0.220 | 0.053 | | 2033 | 1.845 | 1.373 | 0.279 | 2.935 | 3.919 | 0.279 | 0.560 | 0.564 | 0.086 | 1.880 | 3.798 | 0.086 | 0.342 | 0.289 | 0.063 | 0.333 | 0.262 | 0.061 | 0.284 | 0.204 | 0.052 | | 2034 | 1.921 | 1.318 | 0.270 | 2.987 | 3.877 | 0.270 | 0.545 | 0.521 | 0.082 | 1.858 | 3.735 | 0.082 | 0.355 | 0.274 | 0.061 | 0.347 | 0.250 | 0.060 | 0.302 | 0.196 | 0.051 | | 2035
2036 | 1.497
1.899 | 1.242
1.234 | 0.277
0.272 | 2.605
2.981 | 3.766
3.744 | 0.277
0.272 | 0.443
0.504 | 0.475
0.446 | 0.089 | 1.754
1.804 | 3.664 | 0.089
0.104 | 0.275
0.345 | 0.255
0.249 | 0.070
0.088 | 0.268
0.338 | 0.234
0.230 | 0.069 | 0.231 | 0.186
0.185 | 0.060
0.078 | | 2037 | 1.543 | 1.170 | 0.263 | 2.637 | 3.652 | 0.263 | 0.427 | 0.410 | 0.101 | 1.732 | 3.556 | 0.101 | 0.289 | 0.233 | 0.086 | 0.284 | 0.217 | 0.085 | 0.249 | 0.176 | 0.077 | | 2038 | 1.843 | 1.134 | 0.260 | 2.888 | 3.599 | 0.260 | 0.456 | 0.386 | 0.098 | 1.725 | 3.500 | 0.098 | 0.331 | 0.223 | 0.084 | 0.325 | 0.208 | 0.083 | 0.293 | 0.171 | 0.076 | | 2039 | 1.505 | 1.104 | 0.262 | 2.587 | 3.550 | 0.262 | 0.382 | 0.363 | 0.096 | 1.663 | 3.446 | 0.096 | 0.267 | 0.215 | 0.083 | 0.263 | 0.201 | 0.082 | 0.234 | 0.167 | 0.075 | | 2040 | 1.410 | 1.096 | 0.261 | 2.488 | 3.499 | 0.261 | 0.352 | 0.346 | 0.092 | 1.627 | 3.398 | 0.092 | 0.250 | 0.210 | 0.080 | 0.246 | 0.198 | 0.079 | 0.221 | 0.166 | 0.072 | | 2041
2042 | 1.991
2.130 | 1.155
1.152 | 0.273
0.263 | 2.998
3.139 | 3.521
3.488 | 0.273
0.263 | 0.461
0.486 | 0.347
0.337 | 0.092
0.084 | 1.696
1.727 | 3.377 | 0.092
0.084 | 0.359 | 0.218
0.216 | 0.083 | 0.354
0.385 | 0.207
0.205 | 0.082
0.079 | 0.322
0.356 | 0.176
0.176 | 0.072
0.067 | | 2043 | 1.675 | 1.099 | 0.253 | 2.678 | 3.429 | 0.253 | 0.386 | 0.316 | 0.078 | 1.607 | 3.298 | 0.078 | 0.302 | 0.205 | 0.073 | 0.298 | 0.195 | 0.072 | 0.275 | 0.168 | 0.062 | | 2044 | 1.328 | 1.023 | 0.238 | 2.359 | 3.335 | 0.238 | 0.301 | 0.289 | 0.074 | 1.525 | 3.237 | 0.074 | 0.232 | 0.189 | 0.066 | 0.229 | 0.180 | 0.065 | 0.210 | 0.156 | 0.059 | | 2045
2046 | 1.536
1.454 | 1.013
1.006 | 0.236
0.232 | 2.542
2.412 | 3.301
3.267 | 0.236
0.232 | 0.329
0.319 | 0.278
0.269 | 0.071
0.067 | 1.539
1.521 | 3.197
3.154 | 0.071
0.067 | 0.266
0.252 | 0.186
0.183 | 0.063
0.058 | 0.264
0.249 | 0.178
0.175 | 0.062
0.058 | 0.245
0.232 | 0.155
0.154 | 0.057
0.055 | | 2046 | 1.764 | 0.998 | 0.232 | 2.603 | 3.223 | 0.232 | 0.319 | 0.269 | 0.067 | 1.632 | 3.117 | 0.067 | 0.232 | 0.183 | 0.058 | 0.249 | 0.173 | 0.058 | 0.232 | 0.154 | 0.055 | | 2048 | 2.063 | 1.032 | 0.244 | 2.704 | 3.222 | 0.244 | 0.612 | 0.263 | 0.066 | 1.515 | 3.094 | 0.066 | 0.324 | 0.184 | 0.056 | 0.321 | 0.178 | 0.056 | 0.299 | 0.159 | 0.054 | | 2049 | 1.993 | 1.034 | 0.244 | 2.673 | 3.195 | 0.244 | 0.574 | 0.259 | 0.063 | 1.505 | 3.068 | 0.063 | 0.319 | 0.183 | 0.054 | 0.316 | 0.177 | 0.054 | 0.298 | 0.160 | 0.052 | | 2050 | 1.750
1.635 | 1.013
0.991 | 0.237
0.222 | 2.467
2.382 | 3.153
3.110 | 0.237
0.222 | 0.498
0.457 | 0.251
0.242 | 0.060 | 1.454
1.426 | 3.034
2.995 | 0.060
0.055 | 0.282 | 0.179
0.174 | 0.051
0.047 | 0.280
0.264 | 0.173
0.169 | 0.051
0.046 | 0.263
0.248 | 0.156
0.153 | 0.049
0.045 | | 2051 | 1.635 | 0.991 | 0.222 | 2.382 | 3.110 | 0.222 | 0.457 | 0.242 | 0.055 | 1.426 | 2.995 | 0.055 | 0.266 | 0.174 | 0.047 | 0.264 | 0.169 | 0.046 | 0.248 | 0.153 | 0.045 | | 2053 | 2.090 | 1.051 | 0.239 | 2.836 | 3.097 | 0.239 | 0.494 | 0.244 | 0.055 | 1.479 | 2.946 | 0.055 | 0.348 | 0.182 | 0.047 | 0.346 | 0.177 | 0.047 | 0.332 | 0.163 | 0.046 | | 2054 | 1.779 | 1.023 | 0.237 | 2.547 | 3.039 | 0.237 | 0.430 | 0.235 | 0.053 | 1.424 | 2.916 | 0.053 | 0.293 | 0.177 | 0.046 | 0.292 | 0.172 | 0.046 | 0.279 | 0.159 | 0.045 | | 2055
2056 | 1.621
1.835 | 1.018
1.049 | 0.236
0.241 | 2.393
2.621 | 3.008
2.986 | 0.236
0.241 | 0.383
0.407 | 0.231
0.233 | 0.052
0.051 | 1.380
1.418 | 2.887
2.861 | 0.052
0.051 | 0.266
0.305 | 0.175
0.180 | 0.045
0.045 | 0.265
0.303 | 0.171
0.176 | 0.045
0.045 | 0.254
0.292 | 0.159
0.164 | 0.044
0.044 | | 2057 | 1.804 | 1.055 | 0.242 | 2.573 | 2.974 | 0.242 | 0.397 | 0.231 | 0.050 | 1.383 | 2.838 | 0.050 | 0.300 | 0.180 | 0.045 | 0.299 | 0.176 | 0.045 | 0.288 | 0.165 | 0.044 | | 2058 | 1.469 | 1.041 | 0.241 | 2.207 | 2.917 | 0.241 | 0.337 | 0.226 | 0.050 | 1.321 | 2.804 | 0.050 | 0.237 | 0.177 | 0.045 | 0.236 | 0.174 | 0.044 | 0.227 | 0.163 | 0.043 | | 2059 | 1.991
1.480 | 1.065
0.985 | 0.235
0.222 | 2.717
2.239 | 2.936
2.836 | 0.235
0.222 | 0.422
0.316 | 0.228 | 0.047
0.044 | 1.389
1.305 | 2.783 | 0.047
0.044 | 0.339
0.245 | 0.181
0.167 | 0.043
0.040 | 0.337
0.244 | 0.177
0.163 | 0.043 | 0.328 | 0.167
0.154 | 0.042 | | 2060 | 1.372 | 0.983 | 0.222 | 2.239 | 2.790 | 0.222 | 0.316 | 0.209 | 0.044 | 1.273 | 2.693 | 0.044 | 0.243 | 0.167 | 0.040 | 0.244 | 0.163 | 0.040 | 0.237 | 0.149 | 0.039 | | 2062 | 1.505 | 0.956 | 0.226 | 2.268 | 2.766 | 0.226 | 0.297 | 0.197 | 0.043 | 1.277 | 2.663 | 0.043 | 0.249 | 0.161 | 0.040 | 0.249 | 0.158 | 0.040 | 0.260 | 0.150 | 0.039 | | 2063 | 1.501 | 0.962 | 0.228 | 2.255 | 2.743 | 0.228 | 0.296 | 0.196 | 0.043 | 1.267 | 2.639 | 0.043 | 0.250 | 0.162 | 0.040 | 0.250 | 0.159 | 0.040 | 0.266 | 0.151 | 0.039 | | 2064
2065 | 1.575
1.474 | 0.981
1.001 | 0.234
0.243 | 2.321
2.194 | 2.725
2.715 | 0.234
0.243 | 0.306
0.283 | 0.196
0.195 | 0.044
0.045 | 1.271
1.244 | 2.613
2.595 | 0.044
0.045 | 0.263
0.243 | 0.164
0.167 | 0.041
0.042 | 0.262
0.242 | 0.161
0.165 | 0.041
0.042 | 0.278
0.257 | 0.154
0.158 | 0.040
0.042 | | 2065 | 2.057 | 1.018 | 0.243 | 2.741 | 2.717 | 0.243 | 0.283 | 0.195 | 0.043 | 1.304 | 2.575 | 0.043 | 0.243 | 0.167 | 0.042 | 0.242 | 0.163 | 0.042 | 0.257 | 0.161 | 0.042 | | 2067 | 1.616 | 0.973 | 0.243 | 2.331 | 2.577 | 0.243 | 0.301 | 0.183 | 0.044 | 1.245 | 2.461 | 0.044 | 0.267 | 0.161 | 0.042 | 0.266 | 0.159 | 0.042 | 0.279 | 0.154 | 0.041 | Note: Bold-Italicized value indicates first occurrence of species-weighted fish fillet average PCB concentration below human-health based fish ingestion PRG (0.05 mg/kg, 1 meal/week), and other targets (0.2mg/kg, 1 meal/month; 0.4 mg/kg, 1 meal/ 2 months). Table 7-5 Years to Achieve Human Health Based Target Levels Comparison of Alternatives - Upper Hudson River | | No Action | Monitored Natural
Attenuation | CAP/SR-
3/10/Select | CAP/SR-
3/10/Select (15%) | CAP/SR-
3/10/Select (25%) | REM-3/10/Select | REM-3/10/Select
(0 ppm) | REM-3/10/Select
(2 ppm) | REM-3/10/Select
(5 ppm) | REM-0/0/3 | |---|-----------|----------------------------------|------------------------|------------------------------|------------------------------|-----------------|----------------------------|----------------------------|----------------------------|-----------| | River Section 1- RM 189 (Start Year 20 | 08) | | | | | | | | | | | Human Health risk-based PRG 0.05
mg/kg | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | | Fish Target Concentration 0.2 mg/kg | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | >60 | | Fish Target Concentration 0.4 mg/kg | >60 | 32 ->60 | 19 | 19 | 19 | 18 | 18 | 23 | 28 | 6 | | River Section 2- RM 184 (Start Year 20 | 09) | | | | | | | | | | | Human Health risk-based PRG 0.05 mg/kg | >59 | >59 | >59 | >59 | >59 | >59 | >59 | >59 | >59 | >59 | | Fish Target Concentration 0.2 mg/kg | >59 | 54 - >59 | 36 | 36 | 36 | 32 | 32 | 32 | 32 | 26 | | Fish Target Concentration 0.4 mg/kg | >59 | 31 - >59 | 20 | 21 | 22 | 16 |
15 | 22 | 26 | 7 | | River Section 3- RM 154 (Start Year 20 | 10) | | | | | | | | | | | Human Health risk-based PRG 0.05
mg/kg | >58 | 50 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 41 | | Fish Target Concentration 0.2 mg/kg | >58 | 11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | | Fish Target Concentration 0.4 mg/kg | 5 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | #### Notes: The same starting year is used for comparison for all alternatives, although REM-0/0/3 starts one to two years later than other alternatives. > 58, 59, or 60 indicates that action levels are not achieved within the human health modeling time frame, extending until 2067. Range of years calculated using bounding estimates are presented for the No Action and MNA alternatives. #### Table 7-6a ## Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency Upper Hudson River Fish - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Upper Hudson River (RMs 189-154) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | Intake
(Non-Cancer)
(mg/kg-day) | Reference
Dose
(mg/kg-day) | Hazard
Quotient | Percent Hazard Reduction compared to No Action | Percent Hazard Reduction compared to MNA | |--|------------------------------------|---------------------------------------|----------------------------------|--------------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2009) | 2.3-3.5 | 1.1E-03-1.6E-03 | 2.0E-05 | 53-80 | | | | No Action (2011) | 2.1-3.3 | 9.6E-04-1.5E03 | 2.0E-05 | 48-75 | | | | MNA (2009) | 1.7-3.1 | 8.0E-04-1.4E-03 | 2.0E-05 | 40-71 | 11%-50% | | | MNA (2011) | 1.5-2.9 | 6.8E-04-1.3E-04 | 2.0E-05 | 34-66 | 12%-55% | | | CAP-3/10/Select (2009) | 0.65 | 3.0E-04 | 2.0E-05 | 15 | 72%-81% | 63%-79% | | CAP-3/10/Select (15%) (2009) | 0.70 | 3.2E-04 | 2.0E-05 | 16 | 70%-80% | 60%-77% | | CAP-3/10/Select (25%) (2009) | 0.79 | 3.6E-04 | 2.0E-05 | 18 | 66%-77% | 55%-75% | | REM-3/10/Select (2009) | 0.57 | 2.6E-04 | 2.0E-05 | 13 | 75%-84% | 67%-82% | | REM-3/10/Select (0 ppm residual) (2009) | 0.51 | 2.3E-04 | 2.0E-05 | 12 | 78%-85% | 71%-84% | | REM-3/10/Select (2 ppm residual) (2009) | 0.9 | 4.0E-04 | 2.0E-05 | 20 | 62%-75% | 50%-72% | | REM-3/10/Select (5 ppm residual) (2009) | 1.3 | 5.9E-04 | 2.0E-05 | 29 | 45-63% | 26%-59% | | REM-0/0/3 (2011) | 0.33 | 1.5E-04 | 2.0E-05 | 7.6 | 84%-90% | 77%-88% | | Central Tendency | | | | | | | | No Action (2009) | 2.2-3.4 | 9.9E-05-1.5E-04 | 2.0E-05 | 5.0-7.7 | | | | No Action (2011) | 2.0-3.2 | 8.9E-05-1.5E-04 | 2.0E-05 | 4.5-7.3 | | | | MNA (2009) | 1.5-2.9 | 6.9E-05-1.3E-04 | 2.0E-05 | 3.4-6.7 | 13%-56% | | | MNA (2011) | 1.3-2.7 | 5.8E-05-1.3E-04 | 2.0E-05 | 2.9-6.3 | 14%-60% | | | CAP-3/10/Select (2009) | 0.58 | 2.6E-05 | 2.0E-05 | 1.3 | 73%-83% | 62%-80% | | CAP-3/10/Select (15%) (2009) | 0.61 | 2.8E-05 | 2.0E-05 | 1.4 | 72%-82% | 59%-79% | | CAP-3/10/Select (25%) (2009) | 0.69 | 3.2E-05 | 2.0E-05 | 1.6 | 68%-79% | 54%-76% | | REM-3/10/Select (2009) | 0.51 | 2.3E-05 | 2.0E-05 | 1.2 | 76%-85% | 66%-83% | | REM-3/10/Select (0 ppm residual) (2009) | 0.46 | 2.1E-05 | 2.0E-05 | 1.0 | 79%-86% | 69%-84% | | REM-3/10/Select (2 ppm residual) (2009) | 0.8 | 3.5E-05 | 2.0E-05 | 1.7 | 65%-77% | 50%-74% | | REM-3/10/Select (5 ppm residual) (2009) | 1.1 | 5.0E-05 | 2.0E-05 | 2.5 | 50%-67% | 27%-63% | | REM-0/0/3 (2011) | 0.31 | 1.4E-05 | 2.0E-05 | 0.71 | 84%-90% | 76%-89% | Notes: Concentrations were averaged across all three river sections - see text for discussion. Table 7-6b Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency Reasonable Maximum Exposure and Central Tendency River Section 1 - Thompson Island Pool - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Thompson Island Pool (RM 189) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | Intake
(Non-Cancer)
(mg/kg-day) | Reference
Dose
(mg/kg-day) | Hazard
Quotient | Percent Hazard Reduction compared to No Action | Percent Hazard Reduction compared to MNA | |--|------------------------------------|---------------------------------------|----------------------------------|--------------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2008) | 3.2-4.5 | 1.5E-03-2.1E-03 | 2.0E-05 | 74-100 | | | | No Action (2009) | 3.0-4.3 | 1.4E-03-2.0E-03 | 2.0E-05 | 69-98 | | | | MNA (2008) | 2.1-3.5 | 9.7E-04-1.6E-03 | 2.0E-05 | 48-80 | 20%-52% | | | MNA (2009) | 1.9-3.3 | 8.8E-04-1.5E-03 | 2.0E-05 | 44-76 | 22%-55% | | | CAP-3/10/Select (2008) | 0.74 | 3.4E-04 | 2.0E-05 | 17 | 77%-84% | 65%-79% | | CAP-3/10/Select (15%) (2008) | 0.81 | 3.7E-04 | 2.0E-05 | 18 | 75%-82% | 62%-77% | | CAP-3/10/Select (25%) (2008) | 0.91 | 4.1E-04 | 2.0E-05 | 21 | 72%-80% | 57%-74% | | REM-3/10/Select (2008) | 0.72 | 3.3E-04 | 2.0E-05 | 16 | 78%-84% | 66%-80% | | REM-3/10/Select (0 ppm residual) (2008) | 0.63 | 2.9E-04 | 2.0E-05 | 14 | 81%-86% | 70%-82% | | REM-3/10/Select (2 ppm residual) (2008) | 1.1 | 5.2E-04 | 2.0E-05 | 26 | 65%-75% | 47%-68% | | REM-3/10/Select (5 ppm residual) (2008) | 1.7 | 7.8E-04 | 2.0E-05 | 39 | 47%-62% | 19%-51% | | REM-0/0/3 (2009) | 0.42 | 1.9E-04 | 2.0E-05 | 10 | 86%-90% | 78%-87% | | Central Tendency | | | | | • | | | No Action (2008) | 3.1-4.3 | 1.4E-04-2.0E-04 | 2.0E-05 | 7.0-9.8 | | | | No Action (2009) | 3.0-4.2 | 1.4E-04-1.9E-04 | 2.0E-05 | 6.8-9.6 | | | | MNA (2008) | 1.9-3.2 | 8.6E-05-1.5E-04 | 2.0E-05 | 4.3-7.4 | 24%-56% | | | MNA (2009) | 1.7-3.1 | 8.0E-05-1.4E-04 | 2.0E-05 | 4.0-7.1 | 26%-58% | | | CAP-3/10/Select (2008) | 0.68 | 3.1E-05 | 2.0E-05 | 1.6 | 78%-84% | 64%-79% | | CAP-3/10/Select (15%) (2008) | 0.74 | 3.4E-05 | 2.0E-05 | 1.7 | 76%-83% | 61%-77% | | CAP-3/10/Select (25%) (2008) | 0.82 | 3.8E-05 | 2.0E-05 | 1.9 | 73%-81% | 56%-75% | | REM-3/10/Select (2008) | 0.66 | 3.0E-05 | 2.0E-05 | 1.5 | 78%-85% | 65%-80% | | REM-3/10/Select (0 ppm residual) (2008) | 0.59 | 2.7E-05 | 2.0E-05 | 1.3 | 81%-86% | 69%-82% | | REM-3/10/Select (2 ppm residual) (2008) | 1.0 | 4.6E-05 | 2.0E-05 | 2.3 | 67%-77% | 47%-69% | | REM-3/10/Select (5 ppm residual) (2008) | 1.5 | 6.7E-05 | 2.0E-05 | 3.4 | 52%-66% | 21%-55% | | REM-0/0/3 (2009) | 0.42 | 1.9E-05 | 2.0E-05 | 1.0 | 86%-90% | 76%-86% | Notes: Concentrations were averaged across all three river sections - see text for discussion. #### **Table 7-6c** ## Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency River Section 2 - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: RM 184 Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | Intake
(Non-Cancer)
(mg/kg-day) | Reference
Dose
(mg/kg-day) | Hazard
Quotient | Percent Hazard Reduction compared to No Action | Percent
Hazard Reduction
compared to
MNA | |--|------------------------------------|---------------------------------------|----------------------------------|--------------------|--|---| | Reasonable Maximum Exposure | | | | | | | | No Action (2009) | 3.5-5.8 | 1.6E-03-2.6E-03 | 2.0E-05 | 80-130 | | | | No Action (2011) | 3.1-5.5 | 1.4E-03-2.5E-03 | 2.0E-05 | 70-120 | | | | MNA (2009) | 3.0-5.7 | 1.3E-03-2.6E-03 | 2.0E-05 | 67-130 | 0%-48% | | | MNA (2011) | 2.5-5.4 | 1.1E-03-2.4E-03 | 2.0E-05 | 57-120 | 0%-53% | | | CAP-3/10/Select (2009) | 0.99 | 4.5E-04 | 2.0E-05 | 22 | 72%-83% | 67%-83% | | CAP-3/10/Select (15%) (2009) | 1.1 | 4.8E-04 | 2.0E-05 | 24 | 70%-82% | 64%-81% | | CAP-3/10/Select (25%) (2009) | 1.2 | 5.6E-04 | 2.0E-05 | 28 | 65%-79% | 59%-79% | | REM-3/10/Select (2009) | 0.77 | 3.5E-04 | 2.0E-05 | 18 | 78%-87% | 74%-86% | | REM-3/10/Select (0 ppm residual) (2009) | 0.68 | 3.1E-04 | 2.0E-05 | 16 | 80%-88% | 77%-88% | | REM-3/10/Select (2 ppm residual) (2009) | 1.2 | 5.7E-04 | 2.0E-05 | 28 | 64%-78% | 58%-78% | | REM-3/10/Select (5 ppm residual) (2009) | 1.9 | 8.5E-04 | 2.0E-05 | 43 | 47%-68% | 37%-67% | | REM-0/0/3 (2011) | 0.42 | 1.9E-04 | 2.0E-05 | 9.7 | 86%-92% | 83%-92% | | Central Tendency | | | | | | | | No Action (2009) | 3.1-5.5 | 1.4E-04-2.5E-04 | 2.0E-05 | 7.1-12 | | | | No Action (2011) | 2.7-5.2 | 1.3E-04-2.4E-04 | 2.0E-05 | 6.3-12 | | | | MNA (2009) | 2.5-5.3 | 1.1E-04-2.4E-04 | 2.0E-05 | 5.6-12 | 0%-53% | | | MNA (2011) | 2.1-5.1 | 9.5E-05-2.3E-04 | 2.0E-05 | 4.7-12 | 0%-61% | | | CAP-3/10/Select (2009) | 0.85 | 3.9E-05 | 2.0E-05 | 1.9 | 73%-84% | 66%-84% | | CAP-3/10/Select (15%) (2009) | 0.90 | 4.1E-05 | 2.0E-05 | 2.1 | 71%-83% | 63%-83% | | CAP-3/10/Select (25%) (2009) | 1.0 | 4.8E-05 | 2.0E-05 | 2.4 | 66%-81& | 58%-81% | | REM-3/10/Select (2009) | 0.68 | 3.1E-05 | 2.0E-05 | 1.5 | 78%-88% | 73%-87% | | REM-3/10/Select (0 ppm residual) (2009) | 0.60 | 2.8E-05 | 2.0E-05 | 1.4 | 80%-89% | 76%-89% | | REM-3/10/Select (2 ppm residual) (2009) | 1.1 | 4.8E-05 | 2.0E-05 | 2.4 | 66%-81% | 57%-80% | | REM-3/10/Select (5 ppm residual) (2009) | 1.6 | 7.2E-05 | 2.0E-05 | 3.6 | 49%-71% | 37%-71% | | REM-0/0/3 (2011) | 0.38 | 1.7E-05 | 2.0E-05 | 0.87 | 86%-93% | 82%-92% | Notes: Concentrations were averaged across all three river sections - see text for discussion. ## Table
7-6d ## Long-Term Fish Ingestion Non-Cancer Health Hazards Reasonable Maximum Exposure and Central Tendency River Section 3 - Lock 5 to Troy Dam - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Troy Dam (RM 154) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | Intake
(Non-Cancer)
(mg/kg-day) | Reference
Dose
(mg/kg-day) | Hazard
Quotient | Percent Hazard Reduction compared to No Action | Percent Hazard Reduction compared to MNA | |--|------------------------------------|---------------------------------------|----------------------------------|--------------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2010) | 0.44 | 2.0E-04 | 2.0E-05 | 10 | | | | No Action (2012) | 0.40 | 1.8E-04 | 2.0E-05 | 9.1 | | | | MNA (2010) | 0.31 | 1.4E-04 | 2.0E-05 | 7.0 | 30% | | | MNA (2012) | 0.25 | 1.2E-04 | 2.0E-05 | 5.8 | 37% | | | CAP-3/10/Select (2010) | 0.24 | 1.1E-04 | 2.0E-05 | 5.4 | 46% | 23% | | CAP-3/10/Select (15%) (2010) | 0.24 | 1.1E-04 | 2.0E-05 | 5.5 | 45% | 21% | | CAP-3/10/Select (25%) (2010) | 0.25 | 1.1E-04 | 2.0E-05 | 5.6 | 44% | 20% | | REM-3/10/Select (2010) | 0.23 | 1.1E-04 | 2.0E-05 | 5.3 | 47% | 24% | | REM-3/10/Select (0 ppm residual) (2010) | 0.22 | 1.0E-04 | 2.0E-05 | 5.1 | 49% | 27% | | REM-3/10/Select (2 ppm residual) (2010) | 0.26 | 1.2E-04 | 2.0E-05 | 5.9 | 42% | 17% | | REM-3/10/Select (5 ppm residual) (2010) | 0.29 | 1.3E-04 | 2.0E-05 | 6.5 | 35% | 7% | | REM-0/0/3 (2012) | 0.16 | 7.2E-05 | 2.0E-05 | 3.6 | 60% | 37% | | Central Tendency | | | | | | | | No Action (2010) | 0.41 | 1.9E-05 | 2.0E-05 | 0.94 | | | | No Action (2012) | 0.38 | 1.8E-05 | 2.0E-05 | 0.88 | | | | MNA (2010) | 0.26 | 1.2E-05 | 2.0E-05 | 0.60 | 37% | | | MNA (2012) | 0.22 | 1.0E-05 | 2.0E-05 | 0.50 | 42% | | | CAP-3/10/Select (2010) | 0.19 | 8.9E-06 | 2.0E-05 | 0.44 | 53% | 26% | | CAP-3/10/Select (15%) (2010) | 0.20 | 9.1E-06 | 2.0E-05 | 0.46 | 52% | 24% | | CAP-3/10/Select (25%) (2010) | 0.20 | 9.3E-06 | 2.0E-05 | 0.47 | 51% | 22% | | REM-3/10/Select (2010) | 0.19 | 8.7E-06 | 2.0E-05 | 0.44 | 54% | 27% | | REM-3/10/Select (0 ppm residual) (2010) | 0.18 | 8.4E-06 | 2.0E-05 | 0.42 | 56% | 30% | | REM-3/10/Select (2 ppm residual) (2010) | 0.21 | 9.7E-06 | 2.0E-05 | 0.49 | 48% | 19% | | REM-3/10/Select (5 ppm residual) (2010) | 0.24 | 1.1E-05 | 2.0E-05 | 0.55 | 42% | 8% | | REM-0/0/3 (2012) | 0.13 | 6.1E-06 | 2.0E-05 | 0.30 | 65% | 40% | #### Table 7-7a ## Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency Upper Hudson River Fish - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Upper Hudson River (RMs 189-154) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc. Intake in Fish (Cancer) (mg/kg ww) (mg/kg-day) | | Cancer Slope
Factor
(mg/kg-day) | Cancer
Risk | Percent Risk Reduction compared to No Action | Percent Risk Reduction compared to MNA | |--|--|-----------------|---------------------------------------|-----------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2009) | 1.5-2.7 | 3.9E-04-7.0E-04 | 2 | 7.8E-04-1.4E-03 | | | | No Action (2011) | 1.4-2.6 | 3.7E-04-6.7E-04 | 2 | 7.3E-04-1.3E-03 | | | | MNA (2009) | 0.76-2.2 | 2.0E-04-5.8E-04 | 2 | 4.0E-04-1.2E-03 | 14%-71% | | | MNA (2011) | 0.66-2.1 | 1.7E-04-5.5E-04 | 2 | 3.5E-04-1.1E-03 | 15%-73% | | | CAP-3/10/Select (2009) | 0.34 | 9.0E-05 | 2 | 1.8E-04 | 77%-87% | 55%-84% | | CAP-3/10/Select (15%) (2009) | 0.36 | 9.4E-05 | 2 | 1.9E-04 | 76%-86% | 53%-84% | | CAP-3/10/Select (25%) (2009) | 0.40 | 1.0E-04 | 2 | 2.1E-04 | 73%-85% | 48%-82% | | REM-3/10/Select (2009) | 0.32 | 8.3E-05 | 2 | 1.7E-04 | 79%-88% | 58%-86% | | REM-3/10/Select (0 ppm residual) (2009) | 0.29 | 7.7E-05 | 2 | 1.5E-04 | 80%-89% | 61%-87% | | REM-3/10/Select (2 ppm residual) (2009) | 0.42 | 1.1E-04 | 2 | 2.2E-04 | 72%-84% | 44%-81% | | REM-3/10/Select (5 ppm residual) (2009) | 0.57 | 1.5E-04 | 2 | 3.0E-04 | 62%-79% | 25%-74% | | REM-0/0/3 (2011) | 0.22 | 5.8E-05 | 2 | 1.2E-04 | 84%-91% | 66%-89% | | Central Tendency | | | | | | | | No Action (2009) | 2.2-3.4 | 1.7E-05-2.6E-05 | 1 | 1.7E-05-2.6E-05 | | | | No Action (2011) | 2.0-3.2 | 1.5E-05-2.5E-05 | 1 | 1.5E-05-2.5E-05 | | | | MNA (2009) | 1.5-2.9 | 1.2E-05-2.3E-05 | 1 | 1.2E-05-2.3E-05 | 12%-54% | | | MNA (2011) | 1.3-2.7 | 1.0E-05-2.1E-05 | 1 | 1.0E-05-2.1E-05 | 16%-60% | | | CAP-3/10/Select (2009) | 0.58 | 4.5E-06 | 1 | 4.5E-06 | 73%-83% | 62%-80% | | CAP-3/10/Select (15%) (2009) | 0.61 | 4.8E-06 | 1 | 4.8E-06 | 72%-82% | 59%-79% | | CAP-3/10/Select (25%) (2009) | 0.69 | 5.4E-06 | 1 | 5.4E-06 | 68%-79% | 54%-76% | | REM-3/10/Select (2009) | 0.51 | 4.0E-06 | 1 | 4.0E-06 | 76%-85% | 66%-83% | | REM-3/10/Select (0 ppm residual) (2009) | 0.46 | 3.6E-06 | 1 | 3.6E-06 | 79%-86% | 69%-84% | | REM-3/10/Select (2 ppm residual) (2009) | 0.76 | 5.9E-06 | 1 | 5.9E-06 | 65%-77% | 50%-74% | | REM-3/10/Select (5 ppm residual) (2009) | 1.1 | 8.6E-06 | 1 | 8.6E-06 | 50%-67% | 27%-63% | | REM-0/0/3 (2011) | 0.31 | 2.4E-06 | 1 | 2.4E-06 | 84%-90% | 76%-89% | Notes: Concentrations were averaged across all three river sections - see text for discussion. #### Table 7-7b ## Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 1 - Thompson Island Pool - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Thompson Island Pool (RM 189) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | in Fish (Cancer) | | Cancer
Risk | Percent Risk Reduction compared to No Action | Percent Risk Reduction compared to MNA | |--|------------------------------------|------------------|---|-----------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2008) | 2.3-3.4 | 5.9E-04-8.9E-04 | 2 | 1.2E-03-1.8E-03 | | | | No Action (2009) | 2.2-3.3 | 5.8E-04-8.7E-04 | 2 | 1.2E-03-1.7E-03 | | | | MNA (2008) | 1.0-2.3 | 2.6E-04-6.1E-04 | 2 | 5.3E-04-1.2E-03 | 33%-71% | | | MNA (2009) | 0.95-2.3 | 2.5E-04-5.9E-04 | 2 | 5.0E-04-1.2E-03 | 29%-71% | | | CAP-3/10/Select (2008) | 0.46 | 1.2E-04 | 2 | 2.4E-04 | 80%-87% | 54%-80% | | CAP-3/10/Select (15%) (2008) | 0.48 | 1.3E-04 | 2 | 2.5E-04 | 79%-86% | 52%-79% | | CAP-3/10/Select (25%) (2008) | 0.52 | 1.4E-04 | 2 | 2.7E-04 | 77%-85% | 48%-78% | | REM-3/10/Select (2008) | 0.45 | 1.2E-04 | 2 | 2.3E-04 | 80%-87% | 55%-81% | | REM-3/10/Select (0 ppm residual) (2008) | 0.42 | 1.1E-04 | 2 | 2.2E-04 | 82%-88% | 59%-82% | | REM-3/10/Select (2 ppm residual) (2008) | 0.60 | 1.6E-04 | 2 | 3.1E-04 | 74%-82% | 41%-74% | | REM-3/10/Select (5 ppm residual) (2008) | 0.80 | 2.1E-04 | 2 | 4.2E-04 | 65%-76% | 20%-66% | | REM-0/0/3 (2009) | 0.34 | 8.7E-05 | 2 | 1.7E-04 | 85%-90% | 65%-85% | | Central Tendency | l . | | | | | | | No Action (2008) | 3.1-4.3 | 2.4E-05-3.4E-05 | 1 | 2.4E-05-3.4E-05 | | | | No Action (2009) | 3.0-4.2 | 2.3E-05-3.3E-05 | 1 | 2.3E-05-3.3E-05 | | | | MNA (2008) | 1.9-3.2 | 1.5E-05-2.5E-05 | 1 | 1.5E-05-2.5E-05 | 26%-56% | | | MNA (2009) | 1.7-3.1 | 1.4E-05-2.4E-05 | 1 | 1.4E-05-2.4E-05 | 27%-58% | | | CAP-3/10/Select (2008) | 0.68 | 5.4E-06 | 1 | 5.4E-06 | 78%-84% | 64%-79% | | CAP-3/10/Select (15%) (2008) | 0.74 | 5.8E-06 | 1 | 5.8E-06 | 76%-83% | 61%-77% | | CAP-3/10/Select (25%) (2008) | 0.82 | 6.4E-06 | 1 | 6.4E-06 | 73%-81% | 56%-75% | | REM-3/10/Select (2008) | 0.66 | 5.2E-06 | 1 | 5.2E-06 | 78%-85% | 65%-80% | | REM-3/10/Select (0 ppm residual) (2008) | 0.59 | 4.6E-06 | 1 | 4.6E-06 | 81%-86% | 69%-82% | | REM-3/10/Select (2 ppm residual) (2008) | 1.00 | 7.8E-06 | 1 | 7.8E-06 | 67%-77% | 47%-69% | | REM-3/10/Select (5 ppm residual) (2008) | 1.47 | 1.2E-05 | 1 | 1.2E-05 | 52%-66% | 21%-55% | | REM-0/0/3 (2009) | 0.42 | 3.3E-06 | 1 | 3.3E-06 | 86%-90% | 76%-86% | Notes: Concentrations were averaged across all three river sections - see text for discussion. #### Table 7-7c ## Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 2 - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: RM 184 Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | in Fish (Cancer) | | Cancer
Risk | Percent Risk Reduction compared to No Action | Percent Risk Reduction compared to MNA | |--|------------------------------------|------------------|---|-----------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2009) | 1.9-4.4 | 5.0E-04-1.1E-03 | 2 | 1.0E-03-2.3E-03 | | | | No Action (2011) | 1.8-4.2 | 4.6E-04-1.1E-03 | 2 | 9.1E-04-2.2E-03 | | | | MNA (2009) | 1.2-4.2 | 3.1E-04-1.1E-03 | 2 | 6.1E-04-2.2E-03 | 4%-73% | | | MNA (2011) | 1.0-4.1 | 2.6E-04-1.1E-03 | 2 | 5.2E-04-2.1E-03 | 5%-76% | | | CAP-3/10/Select (2009) | 0.46 | 1.2E-04 | 2 | 2.4E-04 | 76%-89% | 61%-89% | | CAP-3/10/Select (15%) (2009) | 0.49 | 1.3E-04 | 2 | 2.6E-04 | 74%-89% |
58%-88% | | CAP-3/10/Select (25%) (2009) | 0.55 | 1.4E-04 | 2 | 2.9E-04 | 71%-87% | 53%-87% | | REM-3/10/Select (2009) | 0.39 | 1.0E-04 | 2 | 2.0E-04 | 80%-91% | 67%-91% | | REM-3/10/Select (0 ppm residual) (2009) | 0.36 | 9.4E-05 | 2 | 1.9E-04 | 81%-92% | 69%-91% | | REM-3/10/Select (2 ppm residual) (2009) | 0.56 | 1.5E-04 | 2 | 2.9E-04 | 71%-87% | 53%-87% | | REM-3/10/Select (5 ppm residual) (2009) | 0.78 | 2.0E-04 | 2 | 4.1E-04 | 59%-82% | 34%-82% | | REM-0/0/3 (2011) | 0.25 | 6.6E-05 | 2 | 1.3E-04 | 86%-94% | 75%-94% | | Central Tendency | • | | | | | | | No Action (2009) | 3.1-5.5 | 2.4E-05-4.3E-05 | 1 | 2.4E-05-4.3E-05 | | | | No Action (2011) | 2.7-5.2 | 2.2E-05-4.1E-05 | 1 | 2.2E-05-4.1E-05 | | | | MNA (2009) | 2.5-5.3 | 1.9E-05-4.2E-05 | 1 | 1.9E-05-4.2E-05 | 2%-56% | | | MNA (2011) | 2.1-5.1 | 1.6E-05-4.0E-05 | 1 | 1.6E-05-4.0E-05 | 2%-61% | | | CAP-3/10/Select (2009) | 0.85 | 6.6E-06 | 1 | 6.6E-06 | 73%-84% | 66%-84% | | CAP-3/10/Select (15%) (2009) | 0.90 | 7.1E-06 | 1 | 7.1E-06 | 71%-83% | 63%-83% | | CAP-3/10/Select (25%) (2009) | 1.0 | 8.2E-06 | 1 | 8.2E-06 | 66%-81% | 58%-81% | | REM-3/10/Select (2009) | 0.68 | 5.3E-06 | 1 | 5.3E-06 | 78%-88% | 73%-87% | | REM-3/10/Select (0 ppm residual) (2009) | 0.60 | 4.7E-06 | 1 | 4.7E-06 | 80%-89% | 76%-89% | | REM-3/10/Select (2 ppm residual) (2009) | 1.1 | 8.3E-06 | 1 | 8.3E-06 | 66%-81% | 57%-80% | | REM-3/10/Select (5 ppm residual) (2009) | 1.6 | 1.2E-05 | 1 | 1.2E-05 | 49%-71% | 37%-71% | | REM-0/0/3 (2011) | 0.38 | 3.0E-06 | 1 | 3.0E-06 | 86%-93% | 82%-92% | #### Notes: Concentrations were averaged across all three river sections - see text for discussion. #### Table 7-7 d # Long-Term Fish Ingestion Cancer Risks Reasonable Maximum Exposure and Central Tendency River Section 3 - Lock 5 to Troy Dam - Adult Angler Scenario Time Frame: Long-Term Post-Remediation Exposure Medium: Fish Exposure Point: Troy Dam (RM 154) Exposure Route: Ingestion Chemical of Potential Concern: PCBs Receptor: Adult Angler | Remedial Alternative (with starting year for evaluation) | PCB Conc.
in Fish
(mg/kg ww) | Intake
(Cancer)
(mg/kg-day) | Cancer Slope
Factor
(mg/kg-day) | Cancer
Risk | Percent Risk Reduction compared to No Action | Percent Risk Reduction compared to MNA | |--|------------------------------------|-----------------------------------|---------------------------------------|----------------|--|--| | Reasonable Maximum Exposure | | | | | | | | No Action (2010) | 0.32 | 8.3E-05 | 2 | 1.7E-04 | | | | No Action (2012) | 0.30 | 7.9E-05 | 2 | 1.6E-04 | | | | MNA (2010) | 0.15 | 3.8E-05 | 2 | 7.7E-05 | 54% | | | MNA (2012) | 0.13 | 3.4E-05 | 2 | 6.8E-05 | 57% | | | CAP-3/10/Select (25%) (2010) | 0.12 | 3.0E-05 | 2 | 6.1E-05 | 64% | 21% | | CAP-3/10/Select (2010) | 0.11 | 2.9E-05 | 2 | 5.8E-05 | 65% | 25% | | CAP-3/10/Select (15%) (2010) | 0.11 | 3.0E-05 | 2 | 5.9E-05 | 64% | 23% | | REM-3/10/Select (2010) | 0.11 | 2.9E-05 | 2 | 5.7E-05 | 66% | 26% | | REM-3/10/Select (0 ppm residual) (2010) | 0.11 | 2.8E-05 | 2 | 5.5E-05 | 67% | 28% | | REM-3/10/Select (2 ppm residual) (2010) | 0.12 | 3.1E-05 | 2 | 6.3E-05 | 62% | 18% | | REM-3/10/Select (5 ppm residual) (2010) | 0.14 | 3.5E-05 | 2 | 7.1E-05 | 58% | 8% | | REM-0/0/3 (2012) | 0.08 | 2.2E-05 | 2 | 4.3E-05 | 73% | 36% | | Central Tendency | | | | | | | | No Action (2010) | 0.41 | 3.2E-06 | 1 | 3.2E-06 | | | | No Action (2012) | 0.38 | 3.0E-06 | 1 | 3.0E-06 | | | | MNA (2010) | 0.26 | 2.1E-06 | 1 | 2.1E-06 | 37% | | | MNA (2012) | 0.22 | 1.7E-06 | 1 | 1.7E-06 | 42% | | | CAP-3/10/Select (2010) | 0.19 | 1.5E-06 | 1 | 1.5E-06 | 53% | 26% | | CAP-3/10/Select (15%) (2010) | 0.20 | 1.6E-06 | 1 | 1.6E-06 | 52% | 24% | | CAP-3/10/Select (25%) (2010) | 0.20 | 1.6E-06 | 1 | 1.6E-06 | 51% | 22% | | REM-3/10/Select (2010) | 0.19 | 1.5E-06 | 1 | 1.5E-06 | 54% | 27% | | REM-3/10/Select (0 ppm residual) (2010) | 0.18 | 1.4E-06 | 1 | 1.4E-06 | 56% | 30% | | REM-3/10/Select (2 ppm residual) (2010) | 0.21 | 1.7E-06 | 1 | 1.7E-06 | 48% | 19% | | REM-3/10/Select (5 ppm residual) (2010) | 0.24 | 1.9E-06 | 1 | 1.9E-06 | 42% | 8% | | REM-0/0/3 (2012) | 0.13 | 1.0E-06 | 1 | 1.0E-06 | 65% | 40% | Table 7-8 Time to Reach Ecological Target Concentrations | | | No Action | Monitored
Natural
Attenuation | CAP/SR-
3/10/Select | CAP-3/10/Select (15%) | | REM-3/10/Select | REM-3/10/Select
(residual of 0
ppm) | | REM-3/10/Select
(5 ppm) | REM-0/0/3 | |----------------------------|-------------|-----------------|-------------------------------------|------------------------|-----------------------|------|-----------------|---|------|----------------------------|-----------| | River Section 1 (RM 189) b | eginning in | 2008 for all al | ternatives | | | , , | | ** / | | | | | M:1- | LOAEL | > 60 | 22->60 | 5 | 5 | 6 | 4 | 3 | 13 | 16 | 2 | | Mink | NOAEL | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | | River Otter | LOAEL | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | | River Otter | NOAEL | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | > 60 | | River Section 2 (RM 184) b | eginning in | 2009 for all al | ternatives | | | | | | | | | | Mink | LOAEL | 21->59 | 10->59 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | | IVIIIK | NOAEL | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | 52 | | River Otter | LOAEL | > 59 | > 59 | 52 | 52 | 52 | 52 | 43 | 52 | > 59 | 35 | | River Otter | NOAEL | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | > 59 | | River Section 3 (RM 154) b | eginning in | 2010 for all al | ternatives | | | | | | | | | | Mink | LOAEL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | IVIIIIK | NOAEL | > 58 | 12 | 5 | 6 | 6 | 5 | 4 | 7 | 9 | 4 | | River Otter | LOAEL | > 58 | 14 | 8 | 8 | 9 | 8 | 7 | 10 | 11 | 5 | | Kivei Ottei | NOAEL | > 58 | > 58 | > 58 | > 58 | > 58 | > 58 | > 58 | > 58 | > 58 | > 58 | #### Notes: Range of years calculated using bounding estimates are presented for the No Action and MNA alternatives. There is no bounding range presented for the No Action and MNA alternatives in River Section 3 because there are no cohesive sediments in this segment and therefore no bounding range could be calculated. Table 7-9 Average of PCB Toxicity Quotients - Ecological Receptors (25-Year Time Frame) | | | No Action - | No Action - | | | | CAP- | CAP- | | REM- | REM- | REM- | | |---------------|-------------|-------------|--------------|-------------|--------------|-------------|---------------|-------------|-------------|----------------|----------------|----------------|-----------| | | | Start Year | Start Year | MNA - Start | MNA - Start | CAP- | 3/10/Select | 3/10/Select | REM- | 3/10/Select (0 | 3/10/Select (2 | 3/10/Select (5 | | | | | 2008 | 2009 | Year 2008 | Year 2009 | 3/10/Select | (15%) | (25%) | 3/10/Select | ppm) | ppm) | ppm) | REM-0/0/3 | | River Section | n 1 (RM 189 |) Modeling | Timeframe is | 3 2008-2032 | except for R | EM-0/0/3 wh | nich is 2009- | 2033 | | | | | | | Mink | LOAEL | 4.6-5.3 | 4.5-5.2 | 1.7-2.6 | 1.6-2.5 | 0.9 | 1.0 | 1.1 | 0.95 | 0.90 | 1.2 | 1.5 | 0.70 | | WIIIK | NOAEL | 46-53 | 45-52 | 17-26 | 16-25 | 9.4 | 10 | 11 | 9.5 | 9.0 | 12 | 15 | 7.0 | | River Otter | LOAEL | 24-30 | 23-29 | 9.7-15 | 9.1-14 | 5.3 | 5.5 | 5.8 | 5.2 | 4.8 | 6.5 | 8.3 | 3.7 | | Kivei Ottei | NOAEL | 240-300 | 230-290 | 97-150 | 91-140 | 53 | 55 | 58 | 52 | 48 | 65 | 83 | 37 | | River Section | n 2 (RM 184 |) Modeling | Timeframe is | 2009-2033 | except for R | EM-0/0/3 wh | nich is 2011- | 2035 | | | | | | | Mink | LOAEL | 1.5-2.7 | 1.3-2.6 | 0.94-2.5 | 0.79-2.4 | 0.36 | 0.39 | 0.43 | 0.31 | 0.28 | 0.44 | 0.62 | 0.19 | | WIIIK | NOAEL | 15-27 | 13-26 | 9.4-25 | 7.9-24 | 3.6 | 3.9 | 4.3 | 3.1 | 2.8 | 4.4 | 6.2 | 1.9 | | River Otter | LOAEL | 14-27 | 12-26 | 9.2-24 | 7.8-23 | 3.5 | 3.7 | 4.2 | 2.9 | 2.7 | 4.3 | 6.1 | 1.8 | | Kivei Ottei | NOAEL | 140-270 | 120-260 | 92-240 | 78-230 | 35 | 37 | 42 | 29 | 27 | 43 | 61 | 18 | | River Section | n 3 (RM 154 |) Modeling | Timeframe is | 2010-2034 | except for R | EM-0/0/3 wh | nich is 2012- | 2036 | | | | | | | Mink | LOAEL | 0.21 | 0.20 | 0.11 | 0.09 | 0.07 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.10 | 0.06 | | WIIIK | NOAEL | 2.1 | 2.0 | 1.1 | 0.9 | 0.75 | 0.79 | 0.81 | 0.75 | 0.72 | 0.84 | 0.96 | 0.55 | | River Otter | LOAEL | 2.4 | 2.3 | 1.2 | 1.1 | 0.87 | 0.90 | 0.92 | 0.86 | 0.82 | 0.97 | 1.1 | 0.62 | | Kivei Ollei | NOAEL | 24 | 23 | 12 | 11 | 8.7 | 9.0 | 9.2 | 8.6 | 8.2 | 9.7 | 11 | 6.2 | #### Notes: TQs above the target level of 1.0 are bolded. Range of years calculated using bounding estimates are presented for the No Action and MNA alternatives. There is no bounding range presented for the No Action and MNA alternatives in River Section 3 because there are no delineated cohesive sediments in this segment and therefore no bounding range could be calculated. Table 7-10 Probabilistic Dose-Response Analysis - Selected Output for Probability of Reduction of Fecundity of the Female River Otter - River Section 1 | | | | , | Year : 2011 | | | | | | • | Year : 2021 | | | | Year : 2036 | | | | | | | |--------------|-----------|-----------|-------|-------------|-------------|-------------|-----------|-----------|-----------|-------|-------------|-------------|-------------|-----------|-------------|-----------|-------|------|-------------|-------------|-----------| | Percentile | No Action | | MINA | | | | | No Action | | MINA | | | | | No Action | | MINA | | | | | | Reduction in | Upper | | Upper | | CAP- | REM- | | Upper | | Upper | | CAP- | REM- | | Upper | | Upper | | CAP- | REM- | | | Fecundity | Bound | No Action | Bound | MNA | 3/10/Select | 3/10/Select | REM-0/0/3 | Bound | No Action | Bound | MNA | 3/10/Select | 3/10/Select | REM-0/0/3 | Bound | No Action | Bound | MNA | 3/10/Select
| 3/10/Select | REM-0/0/3 | | 2% | 100% | | 4% | 100% | | 6% | 100% | | 8% | 100% | | 10% | 100% | | 15% | 100% | | 20% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 100% | 100% | 99% | | 99% | | 25% | 100% | 100% | 100% | 100% | 100% | 100% | 98% | 100% | 100% | 100% | 100% | 99% | 99% | 96% | 100% | 100% | 100% | 99% | 97% | | 96% | | 30% | 100% | 100% | 100% | 100% | 100% | 100% | 95% | 100% | 100% | 100% | 100% | 97% | 97% | 90% | 100% | 100% | 100% | 97% | 93% | | 90% | | 35% | 100% | 100% | 100% | 100% | 99% | 99% | 89% | 100% | 100% | 100% | 100% | 94% | 93% | 82% | 100% | 100% | 100% | 94% | 86% | | 81% | | 40% | 100% | 100% | 100% | 100% | 98% | 97% | 81% | 100% | 100% | 100% | 99% | 88% | 86% | 71% | 100% | 100% | 100% | 88% | 77% | | 70% | | 45% | 100% | 100% | 100% | 100% | 95% | 93% | 71% | 100% | 100% | 100% | 97% | 80% | 78% | 59% | 100% | 100% | 99% | 81% | 67% | | 58% | | 50% | 100% | 100% | 100% | 100% | 91% | 89% | 60% | 100% | 100% | 100% | 95% | 71% | 68% | 47% | 100% | 100% | 98% | 71% | 55% | | 46% | | 55% | 100% | 100% | 100% | 99% | 85% | 82% | 49% | 100% | 100% | 99% | 91% | 60% | 57% | 36% | 100% | 100% | 96% | 61% | 44% | | 35% | | 60% | 100% | 100% | 100% | 99% | 78% | 73% | 38% | 100% | 100% | 98% | 86% | 49% | 46% | 26% | 100% | 100% | 93% | 50% | 33% | | 25% | | 65% | 100% | 100% | 100% | 97% | 69% | 63% | 28% | 100% | 100% | 97% | 78% | 38% | 35% | 18% | 100% | 100% | 88% | 39% | 24% | | 17% | | 70% | 100% | 100% | 99% | 95% | 58% | 52% | 19% | 100% | 99% | 94% | 69% | 28% | 25% | 11% | 100% | 99% | 82% | 29% | 16% | | 11% | | 75% | 100% | 100% | 98% | 92% | 47% | 41% | 12% | 100% | 99% | 90% | 59% | 19% | 17% | 7% | 100% | 99% | 73% | 20% | 9.9% | | 6.4% | | 80% | 100% | 99% | 97% | 86% | 35% | 29% | 7.2% | 99% | 97% | 84% | 47% | 12% | 10% | 4% | 99% | 97% | 63% | 13% | 5.6% | 5.3% | 3.4% | | 85% | 99% | 98% | 93% | 77% | 23% | 19% | 3.6% | 98% | 95% | 74% | 34% | 6.6% | 5.6% | 1.6% | 97% | 94% | 50% | 6.9% | 2.7% | 2.6% | 1.5% | | 90% | 98% | 95% | 86% | 63% | 13% | 10% | 1.4% | 95% | 89% | 60% | 21% | 2.9% | 2.3% | 0.5% | 94% | 88% | 34% | 3.1% | 1.0% | 1.0% | 0.5% | | 92% | 97% | 93% | 82% | 56% | 9.4% | 6.9% | 0.9% | 92% | 85% | 53% | 16% | 1.8% | 1.5% | 0.3% | 91% | 84% | 28% | 2.0% | 0.6% | | 0.3% | | 94% | 95% | 89% | 75% | 47% | 6.2% | 4.4% | 0.5% | 88% | 79% | 44% | 11% | 1.0% | 0.8% | 0.2% | 87% | 78% | 21% | 1.1% | 0.3% | 0.3% | 0.1% | | 96% | 91% | 84% | 66% | 36% | 3.5% | 2.4% | 0.2% | 82% | 71% | 33% | 6.8% | 0.5% | 0.4% | 0.1% | 81% | 69% | 14% | 0.5% | 0.1% | 0.1% | 0.1% | | 98% | 83% | 72% | 50% | 23% | 1.3% | 0.8% | 0.1% | 70% | 56% | 20% | 2.9% | 0.1% | 0.1% | 0.0% | 68% | 54% | 6.9% | 0.2% | 0.0% | 0.0% | 0.0% | Note: Percentiles shown for various alternative represent the probability of the associated reduction in fecundity. For example, the No Action alternative in 2011 has a 100% probability of a 50% reduction in fecundity. Table 7-11 Probabilistic Dose-Response Analysis - Selected Output for Probability of Reduction of Fecundity of the Female River Otter - River Section 2 | | | | | Year : 2011 | | | | | | , | Year : 2021 | | | | | | Year : 2036 | | | | | |--------------|-----------|-----------|-------|-------------|--------|--------|-----------|-----------|-----------|-------|-------------|--------|--------|-----------|-----------|-----------|-------------|------|--------|--------|-----------| | Percentile | No Action | | MINA | | | | | No Action | | MINA | | | | | No Action | | MINA | | | | | | Reduction in | Upper | | Upper | | CAP- | REM- | | Upper | | Upper | | REM- | CAP- | | Upper | | Upper | | CAP- | REM- | , J | | Fecundity | Bound | No Action | Bound | MNA | 3/10/S | 3/10/S | REM-0/0/3 | Bound | No Action | Bound | MNA | 3/10/S | 3/10/S | REM-0/0/3 | Bound | No Action | Bound | MNA | 3/10/S | 3/10/S | REM-0/0/3 | | 2% | 100% | | 4% | 100% | | 6% | 100% | | 8% | 100% | 99% | | 10% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 98% | 96% | | 15% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 96% | 100% | 100% | 100% | 99% | 91% | 89% | 79% | | 20% | 100% | 100% | 100% | 100% | 100% | 100% | 98% | 100% | 100% | 100% | 100% | 96% | 98% | 85% | 100% | 100% | 100% | 96% | 76% | 72% | | | 25% | 100% | 100% | 100% | 100% | 100% | 99% | 94% | 100% | 100% | 100% | 100% | 89% | 95% | | 100% | 100% | 100% | 90% | 57% | 53% | | | 30% | 100% | 100% | 100% | 100% | 99% | 98% | 87% | 100% | 100% | 100% | 100% | 79% | 88% | 52% | 100% | 100% | 100% | 80% | 40% | 35% | | | 35% | 100% | 100% | 100% | 100% | 98% | 95% | 77% | 100% | 100% | 100% | 100% | 67% | 79% | | 100% | 100% | 100% | 68% | 26% | 22% | 12% | | 40% | 100% | 100% | 100% | 100% | 96% | 90% | 65% | 100% | 100% | 100% | 99% | 53% | 67% | | 100% | 99% | 100% | 55% | 17% | 13% | | | 45% | 100% | 100% | 100% | 100% | 93% | 83% | 52% | 100% | 100% | 100% | 97% | 41% | 54% | 15% | 100% | 98% | 100% | 42% | 9.9% | 7.5% | 3.3% | | 50% | 100% | 100% | 100% | 100% | 88% | 75% | 40% | 100% | 100% | 100% | 95% | 30% | 42% | 9.2% | 100% | 96% | 100% | 31% | 5.6% | 4.0% | 1.6% | | 55% | 100% | 100% | 100% | 100% | 81% | 65% | 30% | 100% | 99% | 100% | 91% | 21% | 31% | 5.2% | 100% | 92% | 100% | 21% | 3.1% | 2.1% | | | 60% | 100% | 100% | 100% | 100% | 73% | 54% | 21% | 100% | 98% | 100% | 86% | 14% | 22% | 2.8% | 100% | 87% | 100% | 14% | 1.6% | 1.0% | 0.3% | | 65% | 100% | 100% | 100% | 99% | 63% | 43% | 14% | 100% | 96% | 100% | 78% | 8.4% | 15% | 1.4% | 100% | 81% | 99% | 8.8% | 0.8% | 0.5% | 0.1% | | 70% | 100% | 100% | 100% | 99% | 52% | 32% | 8.4% | 100% | 93% | 100% | 69% | 4.9% | 9.0% | 0.6% | 99% | 72% | 99% | 5.1% | 0.3% | 0.2% | 0.1% | | 75% | 100% | 99% | 100% | 97% | 40% | 23% | 4.8% | 100% | 89% | 99% | 58% | 2.6% | 5.1% | 0.3% | 99% | 61% | 98% | 2.7% | 0.1% | 0.1% | 0.0% | | 80% | 100% | 98% | 100% | 95% | 29% | 15% | 2.4% | 99% | 81% | 99% | 46% | 1.2% | 2.6% | 0.1% | 97% | 49% | 95% | 1.3% | 0.1% | 0.0% | 0.0% | | 85% | 99% | 95% | 99% | 90% | 19% | 8.2% | 1.0% | 98% | 71% | 97% | 33% | 0.5% | 1.1% | 0.0% | 95% | 36% | 91% | 0.5% | 0.0% | 0.0% | 0.0% | | 90% | 98% | | 98% | 82% | 10% | 3.7% | 0.3% | 95% | 56% | 94% | 20% | 0.1% | 0.4% | 0.0% | 89% | 23% | 84% | 0.2% | 0.0% | 0.0% | 0.0% | | 92% | 97% | | 97% | 76% | 7.1% | 2.4% | 0.2% | 93% | 49% | 91% | 15% | 0.1% | 0.2% | 0.0% | 85% | 17% | 79% | 0.1% | 0.0% | 0.0% | 0.0% | | 94% | 96% | | 95% | 69% | 4.6% | 1.4% | 0.1% | 89% | 40% | 87% | 11% | 0.0% | 0.1% | 0.0% | 79% | 12% | 72% | 0.0% | 0.0% | 0.0% | 0.0% | | 96% | 92% | | 91% | 59% | 2.5% | 0.7% | 0.0% | 83% | 30% | 80% | 6.3% | 0.0% | 0.0% | 0.0% | 70% | 7.5% | 62% | 0.0% | 0.0% | 0.0% | 0.0% | | 98% | 85% | 57% | 83% | 43% | 0.9% | 0.2% | 0.0% | 71% | 18% | 67% | 2.7% | 0.0% | 0.0% | 0.0% | 55% | 3.3% | 46% | 0.0% | 0.0% | 0.0% | 0.0% | Note: Percentiles shown for various alternative represent the probability of the associated reduction in fecundity. For example, the No Action alternative in 2011 has a 100% probability of a 50% reduction in fecundity. Table 7-12 Reduction in Ecological Toxicity Quotients as Compared to the No Action and MNA Alternatives | | | Monitored Natural | | CAP-3/10/Select | CAP-3/10/Select | | REM-3/10/Select | REM-3/10/Select | REM-3/10/Select | | |-----------------|--------------|-----------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------| | | | Attenuation | CAP-3/10/Select | (15%) | (25%) | REM-3/10/Select | (0 ppm) | (2 ppm) | (5 ppm) | REM-0/0/3 | | D. G. J. 1 | (D15400) 1 | | | | | 1 | | (2 ppin) | (5 ррш) | REM 6/6/5 | | | | Modeling Timef | | 032 except for 1 | REM-0/0/3 whi | ch is 2009-203; | 3 | | | | | Risk Reduction | 1 | to the No Action | | | | | | | | | | Mink | LOAEL | 52%-63% | 80%-82% | 78%-82% | 77%-80% | 79%-82% | 80%-83% | 74%-78% | 68%-72% | 84%-87% | | | NOAEL | 52%-63% | 80%-82% | 78%-82% | 77%-80% | 79%-82% | 80%-83% | 74%-78% | 68%-72% | 84%-87% | | River Otter | LOAEL | 51%-60% | 78%-82% | 77%-82% | 76%-81% | 78%-83% | 80%-84% | 73%-78% | 65%-72% | 84%-87% | | | NOAEL | 51%-60% | 78%-82% | 77%-82% | 76%-81% | 78%-83% | 80%-84% | 73%-78% | 65%-72% | 84%-87% | | Risk Reduction | | to the MNA Alte | | | | | | | | | | Mink | LOAEL | | 45%-64% | 41%-61% | 38%-59% | 44%-63% | 47%-65% | 31%-54% | 13%-42% | 59%-73% | | | NOAEL | | 45%-64% | 41%-61% | 38%-59% |
44%-63% | 47%-65% | 31%-54% | 13%-42% | 59%-73% | | River Otter | LOAEL | | 45%-64% | 43%-63% | 40%-61% | 46%-65% | 50%-67% | 33%-56% | 14%-44% | 62%-75% | | raver outer | NOAEL | | 45%-64% | 43%-63% | 40%-61% | 46%-65% | 50%-67% | 33%-56% | 14%-44% | 62%-75% | | River Section 2 | (RM 184) N | Modeling Timef | rame is 2009-20 | 033 except for 1 | REM-0/0/3 whi | ch is 2011-2035 | 5 | | | | | Risk Reduction | as compared | to the No Action | Alternative | | | | | | | | | Mink | LOAEL | 7%-36% | 76%-87% | 74%-86% | 70%-84% | 79%-89% | 81%-90% | 70%-84% | 58%-77% | 86%-93% | | WIIIK | NOAEL | 7%-36% | 76%-87% | 74%-86% | 70%-84% | 79%-89% | 81%-90% | 70%-84% | 58%-77% | 86%-93% | | River Otter | LOAEL | 9%-33% | 75%-87% | 73%-86% | 70%-84% | 79%-89% | 81%-90% | 69%-84% | 56%-77% | 86%-93% | | River Otter | NOAEL | 9%-33% | 75%-87% | 73%-86% | 70%-84% | 79%-89% | 81%-90% | 69%-84% | 56%-77% | 86%-93% | | Risk Reduction | as compared | to the MNA Alte | ernative | | | | | | | | | Mink | LOAEL | | 62%-86% | 59%-85% | 54%-83% | 67%-88% | 70%-89% | 53%-83% | 34%-75% | 79%-92% | | WIIIK | NOAEL | | 62%-86% | 59%-85% | 54%-83% | 67%-88% | 70%-89% | 53%-83% | 34%-75% | 79%-92% | | River Otter | LOAEL | | 62%-86% | 60%-85% | 54%-83% | 68%-88% | 71%-89% | 53%-82% | 34%-75% | 80%-93% | | Kivei Ottei | NOAEL | | 62%-86% | 60%-85% | 54%-83% | 68%-88% | 71%-89% | 53%-82% | 34%-75% | 80%-93% | | River Section 3 | (RM 154) N | Aodeling Timef | rame is 2010-20 | 034 except for 1 | REM-0/0/3 whi | ch is 2012-2036 | 5 | | | | | Risk Reduction | as compared | to the No Action | Alternative | | | | | | | | | | LOAEL | 51% | 65% | 63% | 62% | 65% | 66% | 61% | 55% | 73% | | Mink | NOAEL | 51% | 65% | 63% | 62% | 65% | 66% | 61% | 55% | 73% | | D: 0 | LOAEL | 49% | 64% | 63% | 62% | 65% | 66% | 60% | 54% | 73% | | River Otter | NOAEL | 49% | 64% | 63% | 62% | 65% | 66% | 60% | 54% | 73% | | Risk Reduction | as compared | to the MNA Alte | ernative | | | | | | | | | Mink | LOAEL | | 29% | 25% | 23% | 28% | 31% | 20% | 9% | 47% | | IVIIIK | NOAEL | | 29% | 25% | 23% | 28% | 31% | 20% | 9% | 47% | | Direct Otton | LOAEL | | 29% | 27% | 25% | 30% | 33% | 21% | 9% | 49% | | River Otter | NOAEL | | 29% | 27% | 25% | 30% | 33% | 21% | 9% | 49% | Notes: Range shown is based on HUDTOX and trend analysis results for the No Action alternative. There is no bounding range presented for the No Action and MNA alternatives in River Section 3 because there are no cohesive sediments in this segment and therefore no bounding range could be calculated. ## HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 8 | 8-1 | Tri+ PCB Load Over Thompson Island Dam | |-------|--| | 8-2 | Tri+ PCB Load Over Northumberland Dam | | 8-3 | Tri+ PCB Load Over Federal Dam | | 8-4 | Cost Analysis - No Action | | 8-5 | Cost Analysis - Monitored Natural Attenuation | | 8-6 | Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: CAP-3/10/Select | | 8-7 | Engineering Parameters: CAP-3/10/Select | | 8-8a | Cost Analysis - Alternative CAP-3/10/Select | | 8-8b | Cost Analysis - Beneficial Use of Non-TSCA Material - Alternative CAP-3/10/Select | | 8-9 | Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: REM- | | | 3/10/Select | | 8-10a | Engineering Parameters: REM-3/10/Select - Mechanical Removal | | 8-10b | Engineering Parameters: REM-3/10/Select - Hydraulic Removal | | 8-11a | Cost Analysis - Alternative REM-3/10/Select | | 8-11b | Cost Analysis - Beneficial Use of Non-TSCA Material - Alternative REM-3/10/Select | | 8-11c | Cost Analysis - Hydraulic Dredging - Alternative REM-3/10/Select | | 8-12 | Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: REM-0/0/3 | | 8-13a | Engineering Parameters: REM-0/0/3 - Mechanical Removal | | 8-13b | Engineering Parameters: REM-0/0/3 - Hydraulic Removal | | 8-14a | Cost Analysis - Alternative REM-0/0/3 | | 8-14b | Cost Analysis - Beneficial Use of Non-TSCA Material - Alternative REM-0/0/3 | | 8-14c | Cost Analysis - Hydraulic Dredging - Alternative REM-0/0/3 | Table 8-1 Tri+ PCB Load Over Thompson Island Dam (in kg) | Year | No Action | Monitored Natural
Attenuation | CAP-3/10/Select | REM-3/10/Select | REM-0/0/3 | |--------------|----------------|----------------------------------|-----------------|-----------------|----------------| | 1998 | 224.82 | 224.82 | 224.82 | 224.82 | 224.82 | | 1999 | 109.34 | 109.34 | 109.34 | 109.34 | 109.34 | | 2000 | 123.43 | 123.43 | 123.65 | 123.65 | 123.65 | | 2001 | 135.08 | 135.08 | 135.20 | 135.20 | 135.20 | | 2002 | 106.04 | 106.04 | 105.88 | 105.88 | 105.88 | | 2003 | 103.50 | 103.50 | 103.71 | 103.71 | 103.71 | | 2004 | 90.99 | 90.99 | 88.28 | 88.22 | 87.99 | | 2005
2006 | 93.07
99.72 | 51.81
57.19 | 40.86
35.37 | 40.56
34.68 | 38.31
27.13 | | 2007 | 98.93 | 56.80 | 28.11 | 27.24 | 17.48 | | 2008 | 78.73 | 38.11 | 20.81 | 20.24 | 12.68 | | 2009 | 79.26 | 37.68 | 20.45 | 19.90 | 12.63 | | 2010 | 96.12 | 50.72 | 26.29 | 25.60 | 15.15 | | 2011 | 87.84 | 43.72 | 22.91 | 22.31 | 13.77 | | 2012 | 85.25 | 40.47 | 21.67 | 21.14 | 13.38 | | 2013 | 85.98 | 40.35 | 21.59 | 21.10 | 13.41 | | 2014 | 78.44 | 33.15 | 18.74 | 18.36 | 12.34 | | 2015 | 76.47 | 31.06 | 17.95 | 17.60 | 12.05 | | 2016
2017 | 66.38
66.72 | 23.84
23.25 | 15.14
14.33 | 14.87
14.10 | 10.73
10.48 | | 2017 | 70.59 | 26.37 | 15.55 | 15.28 | 11.01 | | 2019 | 62.91 | 20.77 | 13.36 | 13.16 | 9.95 | | 2020 | 67.32 | 22.33 | 14.44 | 14.24 | 10.69 | | 2021 | 64.49 | 20.46 | 13.65 | 13.47 | 10.28 | | 2022 | 60.43 | 17.57 | 12.19 | 12.05 | 9.60 | | 2023 | 59.84 | 16.86 | 11.71 | 11.59 | 9.41 | | 2024 | 66.97 | 20.75 | 13.68 | 13.52 | 10.54 | | 2025 | 61.31 | 17.02 | 12.07 | 11.95 | 9.71 | | 2026 | 61.36 | 16.74 | 12.07 | 11.96 | 9.77 | | 2027
2028 | 59.20
60.80 | 15.27
15.76 | 11.15
11.60 | 11.06
11.51 | 9.30
9.64 | | 2029 | 60.26 | 15.19 | 11.42 | 11.34 | 9.60 | | 2030 | 61.52 | 14.95 | 11.41 | 11.34 | 9.72 | | 2031 | 62.41 | 16.04 | 11.65 | 11.57 | 9.79 | | 2032 | 59.61 | 14.26 | 10.97 | 10.90 | 9.46 | | 2033 | 58.15 | 13.31 | 10.50 | 10.44 | 9.20 | | 2034 | 60.10 | 13.51 | 10.89 | 10.83 | 9.57 | | 2035 | 59.97 | 13.49 | 10.79 | 10.74 | 9.49 | | 2036 | 60.03 | 13.61 | 10.73 | 10.68 | 9.49 | | 2037 | 60.12 | 13.75 | 10.53 | 10.49 | 9.39 | | 2038
2039 | 57.06
62.34 | 12.07
14.17 | 9.94
10.87 | 9.91
10.83 | 9.03
9.75 | | 2040 | 56.29 | 11.62 | 9.73 | 9.70 | 8.96 | | 2041 | 58.02 | 11.52 | 9.91 | 9.89 | 9.19 | | 2042 | 52.57 | 9.98 | 8.88 | 8.86 | 8.35 | | 2043 | 61.92 | 12.92 | 10.61 | 10.59 | 9.76 | | 2044 | 60.29 | 12.39 | 10.26 | 10.24 | 9.52 | | 2045 | 57.69 | 11.63 | 9.74 | 9.72 | 9.09 | | 2046 | 56.38 | 10.62 | 9.50 | 9.49 | 8.97 | | 2047 | 55.74 | 10.64 | 9.33 | 9.32 | 8.85 | | 2048
2049 | 56.86 | 11.74 | 9.39 | 9.37 | 8.91
8.57 | | 2049 | 54.31
58.16 | 10.78
12.07 | 8.96
9.59 | 8.95
9.57 | 8.57
9.11 | | 2050 | 59.14 | 11.90 | 9.72 | 9.71 | 9.11 | | 2052 | 54.60 | 10.29 | 8.96 | 8.95 | 8.63 | | 2053 | 53.57 | 9.97 | 8.78 | 8.77 | 8.49 | | 2054 | 53.49 | 9.83 | 8.77 | 8.77 | 8.50 | | 2055 | 56.99 | 10.76 | 9.37 | 9.36 | 9.03 | | 2056 | 51.42 | 8.90 | 8.42 | 8.42 | 8.23 | | 2057 | 54.78 | 9.58 | 9.09 | 9.08 | 8.86 | | 2058 | 54.29 | 9.53 | 8.75 | 8.75 | 8.53 | | 2059 | 53.62 | 9.34 | 8.73 | 8.73 | 8.54 | | 2060
2061 | 57.88
59.63 | 10.29 | 9.44
9.76 | 9.43
9.76 | 9.20
9.51 | | 2061 | 59.63
53.15 | 10.60
9.08 | 9.76
8.65 | 9.76
8.64 | 9.51
8.50 | | 2062 | 53.15 | 9.08 | 8.60 | 8.60 | 8.51 | | 2064 | 52.67 | 8.94 | 8.68 | 8.68 | 8.60 | | 2065 | 56.05 | 9.42 | 9.00 | 8.99 | 8.90 | | 2066 | 53.82 | 9.04 | 8.73 | 8.73 | 8.64 | | 2067 | 52.65 | 8.83 | 8.18 | 8.17 | 8.11 | | Total Loads | 4902.04 | 2076.82 | 1713.81 | 1704.64 | 1561.85 | Table 8-2 Tri+ PCB Load Over Northumberland Dam (in kg) | ı | T | 30 I | T. | T | | |--------------|-----------------|-------------------------------|-----------------|-----------------|-----------------| | Year | No Action | Monitored Natural Attenuation | CAP-3/10/Select | REM-3/10/Select | REM-0/0/3 | | 1998 | 274.41 | 274.41 | 274.41 | 274.41 | 274.41 | | 1999 | 126.60 | 126.60 | 126.60 | 126.60 | 126.60 | | 2000 | 151.83 | 151.91 | 151.91 | 151.91 | 151.91 | | 2001 | 180.14 | 180.36 | 180.36 | 180.36 | 180.36 | | 2002 | 122.98 | 122.72 | 122.72 | 122.72 | 122.72 | | 2003
2004 | 122.41
99.18 | 122.88
98.74 | 122.88
96.29 | 122.88
96.24 | 122.88
96.04 | | 2004 | 104.70 | 67.44 | 57.78 | 57.51 | 55.48 | | 2006 | 117.06 | 77.81 | 57.64 | 57.01 | 50.06 | | 2007 | 123.60 | 84.47 | 52.43 | 51.14 | 46.65 | | 2008 | 81.71 | 45.07 | 23.78 | 22.75 | 20.53 | | 2009 | 83.37 | 45.75 | 23.54 | 22.44 | 18.86 | | 2010 | 117.75 | 73.65 | 33.90 | 31.78 | 19.27 | | 2011 | 105.32 | 63.00 | 29.07 | 27.24 | 16.91 | | 2012
2013 | 97.04
99.41 | 54.07
55.09 | 26.12
26.34 | 24.72
24.92 | 15.77
15.78 | | 2013 | 84.44 | 41.09 | 21.39 | 20.50 | 13.75 | | 2015 | 82.00 | 38.43 | 20.33 | 19.51 | 13.26 | | 2016 | 67.34 | 28.08 | 16.01 | 15.46 | 11.08 | | 2017 | 65.55 | 25.36 | 15.05 | 14.59 | 10.75 | | 2018 | 76.82 | 34.57 | 17.86 | 17.03 | 11.89 | | 2019 | 63.03 | 23.94 | 14.12 | 13.67 | 10.14 | | 2020 | 69.66 | 26.53 | 15.63 | 15.15 | 11.13 | | 2021
2022 | 67.07
59.54 | 24.89
19.32 | 14.74
12.51 | 14.29
12.23 | 9.57 | | 2022 | 57.70 | 17.68 | 11.84 | 11.60 | 9.27 | | 2024 | 71.54 | 25.64 | 15.17 | 14.71 | 11.14 | | 2025 | 61.48 | 19.26 | 12.54 | 12.26 | 9.73 | | 2026 | 63.03 | 19.69 | 12.75 | 12.46 | 9.92 | | 2027 | 57.11 | 16.06 | 11.16 | 10.97 | 9.00 | | 2028 | 60.97 | 17.56 | 11.95 | 11.73 | 9.62 | | 2029 | 60.71 | 16.95 | 11.76 | 11.55 | 9.58
9.55 | | 2030
2031 | 60.41
65.11 | 16.08
18.89 | 11.51
12.53 | 11.34
12.28 | 9.53 | | 2032 | 60.38 | 15.91 | 11.32 |
11.15 | 9.48 | | 2033 | 57.61 | 14.38 | 10.64 | 10.50 | 9.09 | | 2034 | 60.54 | 14.64 | 11.13 | 11.01 | 9.58 | | 2035 | 60.02 | 14.55 | 11.01 | 10.89 | 9.48 | | 2036 | 60.93 | 14.89 | 11.07 | 10.94 | 9.57 | | 2037 | 60.42 | 14.78 | 10.80 | 10.69 | 9.43 | | 2038
2039 | 55.55
64.40 | 12.36
15.59 | 9.79
11.40 | 9.72
11.28 | 8.77
10.02 | | 2039 | 55.44 | 12.02 | 9.62 | 9.56 | 8.74 | | 2041 | 55.60 | 11.47 | 9.62 | 9.57 | 8.81 | | 2042 | 48.92 | 9.58 | 8.36 | 8.32 | 7.79 | | 2043 | 63.96 | 14.08 | 11.09 | 11.01 | 10.04 | | 2044 | 61.51 | 13.27 | 10.57 | 10.51 | 9.60 | | 2045 | 57.97 | 12.24 | 9.90 | 9.84 | 9.1 | | 2046 | 55.50 | 10.81 | 9.42 | 9.38 | 8.82 | | 2047
2048 | 54.58
55.60 | 10.80
11.81 | 9.21
9.25 | 9.17
9.21 | 8.64
8.70 | | 2048 | 52.68 | 10.72 | 8.73 | 8.70 | 8.2 | | 2050 | 58.50 | 12.50 | 9.72 | 9.68 | 9.14 | | 2051 | 58.78 | 12.14 | 9.73 | 9.69 | 9.2 | | 2052 | 52.79 | 10.21 | 8.72 | 8.70 | 8.34 | | 2053 | 51.72 | 9.86 | 8.52 | 8.50 | 8.13 | | 2054 | 51.88 | 9.76 | 8.53 | 8.51 | 8.2 | | 2055
2056 | 57.40
47.94 | 11.14
8.43 | 9.48
7.86 | 9.45
7.85 | 9.0°
7.6 | | 2056 | 53.88 | 9.64 | 7.86
8.84 | 8.82 | 8.5 | | 2058 | 51.09 | 9.05 | 8.38 | 8.36 | 8.1 | | 2059 | 51.60 | 9.15 | 8.44 | 8.43 | 8.2 | | 2060 | 57.65 | 10.46 | 9.44 | 9.42 | 9.1: | | 2061 | 61.01 | 11.08 | 10.00 | 9.98 | 9.69 | | 2062 | 50.95 | 8.83 | 8.31 | 8.30 | 8.14 | | 2063 | 50.67 | 8.73 | 8.25 | 8.24 | 8.14 | | 2064 | 51.79 | 8.92 | 8.43 | 8.42 | 8.33 | | 2065
2066 | 52.90
51.88 | 8.99
8.81 | 8.60
8.43 | 8.59
8.43 | 8.48
8.33 | | | 49.04 | 8.81
8.31 | 8.43
7.94 | 7.94 | 8.33
7.86 | | 2067 | | | | | | Table 8-3 Tri+ PCB Load Over Federal Dam (in kg) | Year | No Action | Monitored Natural
Attenuation | CAP-3/10/Select | REM-3/10/Select | REM-0/0/3 | |--------------|------------------|----------------------------------|------------------|------------------|------------| | 1998 | 330.29 | 330.29 | 330.29 | 330.29 | 330 | | 1999 | 157.67 | 157.67 | 157.67 | 157.67 | 157 | | 2000 | 205.50 | 205.50 | 205.50 | 205.50 | 205 | | 2001 | 236.73 | 236.73 | 236.73 | 236.73 | 236 | | 2002 | 137.85
130.51 | 137.85
130.51 | 137.85
130.51 | 137.85
130.51 | 137
130 | | 2003 | 95.66 | 95.66 | 94.59 | 94.64 | 94 | | 2005 | 111.39 | 92.33 | 87.26 | 87.13 | 86 | | 2006 | 129.01 | 105.04 | 92.75 | 92.37 | 88 | | 2007 | 128.92 | 103.76 | 82.22 | 81.37 | 78 | | 2008 | 71.28 | 50.58 | 39.15 | 38.63 | 37 | | 2009 | 67.57 | 46.87 | 33.51 | 32.88 | 32 | | 2010 | 131.00 | 93.72 | 59.90 | 58.16 | 49 | | 2011 | 103.84 | 71.76 | 43.17 | 41.65 | 33 | | 2012 | 101.03 | 65.69 | 40.60 | 39.37 | 32 | | 2013 | 104.58 | 67.45 | 40.93 | 39.61 | 31
24 | | 2014
2015 | 83.79
80.29 | 49.22
45.07 | 31.00
28.11 | 30.15
27.32 | 21 | | 2015 | 52.56 | 26.72 | 17.45 | 17.01 | 13 | | 2017 | 51.68 | 24.65 | 16.35 | 15.97 | 13 | | 2018 | 64.02 | 33.48 | 19.15 | 18.42 | 14 | | 2019 | 48.73 | 22.19 | 14.24 | 13.86 | 11 | | 2020 | 63.30 | 28.54 | 17.94 | 17.46 | 13 | | 2021 | 60.01 | 26.06 | 16.28 | 15.83 | 12 | | 2022 | 47.03 | 18.27 | 12.18 | 11.91 | ç | | 2023 | 45.15 | 16.65 | 11.33 | 11.10 | g | | 2024 | 72.84 | 29.43 | 18.30 | 17.80 | 14 | | 2025 | 53.41 | 19.57 | 12.85 | 12.55 | 10 | | 2026 | 53.64 | 19.36 | 12.62 | 12.32 | Ç | | 2027
2028 | 45.34
53.61 | 14.99
17.76 | 10.38
12.08 | 10.18
11.84 | - 8 | | 2028 | 53.93 | 17.76 | 11.90 | 11.68 | 9 | | 2030 | 52.09 | 15.92 | 11.29 | 11.10 | 9 | | 2031 | 58.19 | 18.57 | 12.37 | 12.11 | 10 | | 2032 | 51.49 | 15.28 | 10.69 | 10.51 | | | 2033 | 46.98 | 13.31 | 9.61 | 9.46 | 8 | | 2034 | 56.74 | 15.36 | 11.46 | 11.31 | ģ | | 2035 | 62.56 | 23.52 | 19.75 | 19.59 | 17 | | 2036 | 74.58 | 33.27 | 28.99 | 28.81 | 26 | | 2037 | 69.94 | 29.50 | 25.25 | 25.09 | 22 | | 2038 | 54.47 | 20.71 | 18.08 | 17.98 | 10 | | 2039
2040 | 72.67
49.56 | 27.07
16.38 | 22.70
14.00 | 22.55
13.92 | 20 | | 2040 | 49.04 | 15.01 | 14.07 | 14.00 | 12 | | 2042 | 37.54 | 10.43 | 10.72 | 10.68 | | | 2043 | 67.28 | 19.45 | 18.20 | 18.10 | 14 | | 2044 | 64.24 | 19.84 | 15.92 | 15.82 | 15 | | 2045 | 52.70 | 15.60 | 12.43 | 12.34 | 12 | | 2046 | 52.07 | 14.17 | 11.83 | 11.76 | 11 | | 2047 | 45.97 | 11.96 | 9.90 | 9.84 | ç | | 2048 | 46.61 | 12.25 | 9.57 | 9.52 | 9 | | 2049 | 41.90 | 10.37 | 8.34 | 8.30 | | | 2050 | 51.65 | 12.84 | 10.02 | 9.96 | 1/ | | 2051
2052 | 55.90
41.10 | 13.43
9.22 | 10.74
7.68 | 10.69
7.65 | 10 | | 2052 | 39.34 | 8.51 | 7.20 | 7.17 | (| | 2054 | 40.70 | 8.60 | 7.38 | 7.35 | | | 2055 | 50.26 | 10.69 | 9.03 | 8.99 | | | 2056 | 34.20 | 6.69 | 6.11 | 6.10 | 4 | | 2057 | 45.82 | 9.01 | 8.14 | 8.12 | 7 | | 2058 | 41.92 | 8.15 | 7.44 | 7.43 | 7 | | 2059 | 42.28 | 8.13 | 7.41 | 7.40 | 7 | | 2060 | 54.58 | 10.63 | 9.58 | 9.55 | 9 | | 2061 | 59.16 | 11.41 | 10.33 | 10.31 | 10 | | 2062 | 40.22 | 7.46 | 6.95 | 6.94 | (| | 2063
2064 | 39.55
40.12 | 7.27
7.32 | 6.82 | 6.81 | | | 2064 | 40.12 | 7.56 | 6.89
7.21 | 6.88
7.20 | 7 | | 2066 | 42.20 | 7.59 | 7.21 | 7.24 | | | 2067 | 37.66 | 6.74 | 6.44 | 6.43 | (| | al Loads | 5077.28 | 2919.86 | 2512.58 | 2494.78 | 2372 | TAMS Table 8-4 Cost Analysis No Action | Cost Item | Quantity | Unit C | ost | Unit | | Cost | |--|----------|--------|--------|-------|-----------------|------------------------------| | Review Costs Review - Every 5 Years Five-Year Review Total O&M Costs Annual O&M (for 30 years over O&M period of 2004 through 2033) | 6 | \$ 7 | 76,856 | Event | \$
\$
\$ | 461,136
461,136
15,371 | | Present Worth of Costs Review - Every 5 Years (Years 2004 to 2033) Five-Year Review Total Present Worth Costs for Alternative | | | | | \$
\$ | 139,555
139,555 | | Round To | | | | - | \$ | 140,000 | Table 8-5 Cost Analysis Monitored Natural Attenuation | Cost Item | Quantity | Unit Cost | Unit | Cost | |---|----------|-----------------|-------|-------------------| | | | | | | | Capital Costs | | | | | | Pre-Monitoring | | | | | | Model Development | 1 | \$
507,500 | EA | \$
507,500 | | Total Capital Costs | | | | \$
507,500 | | Monitoring Costs | | | | | | Sediment Monitoring - Conducted in Years 2004, 2007, 2012, 2017, 2022, 2027, 2032 | | | | | | Sediment Monitoring | 7 | \$
2,020,678 | Event | \$
14,144,746 | | Monitoring - Annual | | | | | | Water Monitoring | 30 | \$
1,916,514 | Year | \$
57,495,420 | | Fish Monitoring | 30 | \$
893,378 | Year | \$
26,801,340 | | Annual Reporting | 30 | \$
45,045 | Year | \$
1,351,350 | | Survey - Every 3 Years | | | | | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 10 | \$
707,764 | Event | \$
7,077,640 | | Modeling and Review - Every 5 Years | | | | | | Modeling | 6 | \$
176,473 | Event | \$
1,058,838 | | Five-Year Review | 6 | \$
76,856 | Event | \$
461,136 | | Total O&M Costs | | | | \$
108,390,470 | | Annual O&M (for 30 years over O&M period of 2004 through 2033) | | | | \$
3,613,016 | | Present Worth of Costs | | | | | | Pre-Monitoring | | | | | | Model Development (Year 2003) | | | | \$
416,648 | | Sediment Monitoring - Conducted in Years 2004, 2007, 2012, 2017, 2022, 2027, 2032 | | | | | | Sediment Monitoring | | | | \$
5,471,872 | | Monitoring - Annual (Years 2004 to 2033) | | | | | | Water Monitoring | | | | \$
19,931,319 | | Fish Monitoring | | | | \$
9,290,932 | | Annual Reporting | | | | \$
468,458 | | Survey - Every 3 Years (Years 2004 to 2033) | | | | | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | \$
2,616,502 | | Modeling and Review - Every 5 Years (Years 2004 to 2033) | | | | | | Modeling | | | | \$
320,439 | | Five-Year Review | | | | \$
139,555 | | Total Present Worth Costs for Alternative | | | | \$
38,655,726 | | | | | | | | Round To | | | | \$
39,000,000 | Table 8-6 Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: CAP-3/10/Select | River Section/Parameter | Target Criteria | Contaminant
Removal | Channel
Dredging | Total | |-------------------------------|-----------------------|------------------------|---------------------|-----------| | River Section/Farameter | Target Criteria | Kemovai | Dicuging | Total | | River Section 1 | | | | | | Area Remediated (Acres) | 3 g/m^2 | 266 | 15 | 282 | | Area Capped (Acres) | 3 g/m^2 | 156 | NA | 156 | | Volume Sediments Removed (CY) | 3 g/m^2 | 849,200 | 66,100 | 915,300 | | PCB Mass Remediated (kg) | 3 g/m^2 | 11,600 | 200 | 11,800 | | PCB Mass Removed (kg) | 3 g/m^2 | 7,100 | 200 | 7,300 | | River Section 2 | | | | | | Area Remediated (Acres) | 10 g/m^2 | 74 | 2 | 76 | | Area Capped (Acres) | 10 g/m^2 | 52 | NA | 52 | | Volume Sediments Removed (CY) | 10 g/m^2 | 292,000 | 15,400 | 307,400 | | PCB Mass Remediated (kg) | 10 g/m^2 | 23,600 | 700 | 24,300 | | PCB Mass Removed (kg) | 10 g/m^2 | 15,600 | 700 | 16,300 | | River Section 3 | | | | | | Area Remediated (Acres) | HS 36, 37, part of 39 | 92 | 43 | 135 | | Area Capped (Acres) | HS 36, 37, part of 39 | - | NA | - | | Volume Sediments Removed (CY) | HS 36, 37, part of 39 | 392,900 | 117,300 | 510,200 | | PCB Mass Remediated (kg) | HS 36, 37, part of 39 | 6,700 | 2,800 | 9,500 | | PCB Mass Removed (kg) | HS 36, 37, part of 39 | 6,700 | 2,800 | 9,500 | | Total for alternative | | | | | | Area Remediated (Acres) | | 432 | 61 | 493 | | Area Capped (Acres) | | 207 | - | 207 | | Volume Sediments Removed (CY) | | 1,534,100 | 198,800 | 1,732,900 | | PCB Mass Remediated (kg) | | 41,900 | 3,700 | 45,600 | | PCB Mass Removed (kg) | | 29,400 | 3,700 | 33,100 | Table 8-7 Engineering Parameters: CAP-3/10/Select | | Sediment Volume | PCB | 3 >33ppm | 722 | |----------------|--------------------------
----------------------|--------------------|--------| | _ | Removed | PCB | 1,011 | | | 10va | $(x10^3 \text{ cy})$ | PCE | 3<10ppm | 631 | | Removal | (III oj) | Tota | l Volume | 1,733 | | | Removal | Number of M | lechanical Dredges | 4 | | | Operations | Total Mechani | cal Dredging Hours | 45,900 | | ion | Transportation | Barge Lo | ads to SF/Day | 2 | | ortal | in River ¹ | Barge Lo | ads to NF/Day | 10 | | Transportation | Transportation | Rail Cars | From SF/Day | 14 | | Tr | on Land ¹ | Rail Cars | From NF/Day | 15 | | | Backfill
Quantities | | Sand | 122 | | | | Quantities | Gravel | 122 | | | | $(x10^3 \text{ cy})$ | Silty Material | 197 | | Ę | | | S/G ² | 192 | | Reconstruction | | | Total | 633 | | nstr | | AquaBlok | 150 | | | Seco | Shoreline | < 2' - H | ydroseeding | 78 | | | Stabilization | >2' - Vege | 13 | | | | in (x10 ³ LF) | | Гotal | 91 | | | DI 4 | Ty | 21.0 | | | | Planting
in Acres | T | 21.0 | | | | 111 1101 00 | T | ype C ³ | 54.8 | | | | , | Total | 96.8 | - 1. SF and NF refer to southern and northern transfer facilities, respectively - 2. S/G- Sand and gravel mixtures - 3. Type A Critical area/shallow rooted vegetation - Type B- Critical area/emergent vegetation - Type C- Shallow area planting ### Table 8-8a Cost Analysis Alternative CAP-3/10/Select | Cost Item | Quantity | ı | Unit Cost | Unit | 1 | Cost | |--|-----------|--|-------------------------|----------|----------|-------------------------| | Cost Item | Quantity | 1 | Cint Cost | Omt | | Cost | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 14,841,805 | LS | \$ | 14,841,805 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | | | | | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,782,821 | LS | \$ | 3,782,821 | | Site Prep and Facility Construction - North Site Prep and Facility Construction - South | 1
1 | \$ | 16,870,755
8,020,003 | LS
LS | \$
\$ | 16,870,755
8,020,003 | | Dredging | 1,732,820 | \$ | 28.21 | CY | \$ | 48,875,485 | | Testing and Monitoring (during remediation) | 1,732,820 | \$ | 11,594,641 | LS | \$ | 11,594,641 | | Barging | 1,732,820 | \$ | 22.37 | CY | \$ | 38,761,904 | | Stabilization | 1,732,820 | \$ | 26.76 | CY | \$ | 46,370,678 | | Transport/Landfill Fee | 1,732,020 | Ψ | 20.70 | | Ψ | 40,570,070 | | Load RR Car | 1,871,446 | \$ | 2.44 | CY | \$ | 4,568,086 | | Transportation/Disposal >33 ppm - Texas | 1,091,543 | \$ | 119.20 | tons | \$ | 130,111,189 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 715,478 | \$ | 55.16 | tons | \$ | 39,463,262 | | Sediment Sample & Analysis | 2,620,024 | \$ | 0.42 | tons | \$ | 1,098,678 | | Water Treatment | 1 | \$ | 1,166,701 | LS | \$ | 1,166,701 | | Backfilling | 441,174 | \$ | 55.00 | CY | \$ | 24,262,928 | | Capping | 207 | \$ | 174,302.80 | ACRES | \$ | 36,080,679 | | Habitat & Vegetation Replacement | 1 | \$ | 3,668,899 | LS | \$ | 3,668,899 | | River Bank Stabilization | 1 | \$ | 337,591 | LS | \$ | 337,591 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | \$ | 504,126,401 | | ORM Co-do | | | | | | | | O&M Costs Part Construction Sectionary Manifestine Construct in Visual 2000, 2012, 2017, 2022, 2027, 2022. | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032
Sediment Monitoring | 6 | \$ | 662,588 | Event | \$ | 3,975,528 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 6
6 | \$ | 360,130 | Event | \$ | 2,160,780 | | Post Construction O&M - Annual (for 25 years after construction is complete) | Ü | φ | 300,130 | Event | φ | 2,100,780 | | Cap O&M (Visual Inspection) | 25 | \$ | 34,193 | Year | \$ | 854,825 | | Water Monitoring | 25 | \$ | 1,907,912 | Year | \$ | 47,697,800 | | Fish Monitoring | 25 | \$ | 893,378 | Year | \$ | 22,334,450 | | Annual Reporting | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Post Construction - Every 5 Years (for 25 years after construction is complete) | | | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | 5 | \$ | 1,384,231 | Event | \$ | 6,921,155 | | Modeling | 5 | \$ | 139,504 | Event | \$ | 697,520 | | Five-Year Review | 5 | \$ | 76,856 | Event | \$ | 384,280 | | Total O&M Costs | | | | | \$ | 86,152,463 | | Annual O&M (for 25 years over O&M period of 2009 through 2033) | | | | | \$ | 3,446,099 | | D (XX d) 8.C (| | | | | | | | Present Worth of Costs | | 1 | | | | | | Pre-Construction Studies and Design | | 1 | | | 6 | 12.012.051 | | Design Support Testing (Year 2002) Design (includes Treatability Study and Model Development) (Year 2003) | | 1 | | | \$
\$ | 13,012,951
9,036,959 | | Design (includes Treatability Study and Model Development) (Year 2003) Construction (Years 2004 to 2008) | | | | | \$ | 9,036,959 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 | | | | | Φ | J4,204,211 | | Sediment Monitoring - Conducted in Tears 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring | | | | | \$ | 1,233,363 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 670,358 | | Post Construction O&M - Annual (Years 2009 to 2033) | | 1 | | | | 070,550 | | Cap O&M (Visual Inspection) | | 1 | | | \$ | 239,868 | | Water Monitoring | | 1 | | | \$ | 13,384,257 | | Fish Monitoring | | 1 | | | \$ | 6,267,166 | | Annual Reporting | | | | | \$ | 315,997 | | Post Construction - Every 5 Years (Years 2009 to 2033) | | 1 | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | | 1 | | | \$ | 1,695,461 | | Modeling | | | | | \$ | 170,870 | | Five-Year Review | | | | | \$ | 94,136 | | Total Present Worth Costs for Alternative | | | | | \$ | 368,485,596 | | AVMI A I VOCAL 11 VI III V VOCA IVI AIRCHIGHTU | | | | 1 | Ψ | 200,402,290 | | Round To | | 1 | | | \$ | 370,000,000 | Table 8-8b Cost Analysis - Beneficial Use of Non-TSCA Material Alternative CAP-3/10/Select | MobilizationDemobilization | Cost Item | Quantity | I | Unit Cost | Unit | | Cost | |--|--|---------------|----|------------|-------|----|-------------| | Pre-Construction Studies and Design | | | Ì | • | - | | | | Design Support Testing | | | | | | | | | Design (fincheds Treatability Study and Model Development) | = | | 6 | 14.041.00= | 1.0 | | 14041005 | | Construction | | | | | | | | | Contractor Work Plans | | 1 | \$ | 11,007,500 | LS | 2 | 11,007,500 | | Health & Safety 1 | | 1 | \$ | 363 674 | 15 | \$ | 363 674 | | Construction Management | | | | , | | | | | MobilizationDemobilization | · · | | | | | | 9,321,669 | | Site Pep and Facility Construction - South | = | 1 | | | LS | | 3,782,821 | | Dredging | Site Prep and Facility Construction - North | 1 | \$ | 16,870,755 | LS | \$ | 16,870,755 | | Testing and Monitoring (during remediation) | Site Prep and Facility Construction - South | 1 | | 8,020,003 | | | 8,020,003 | | Barging | | | | | | | 48,875,485 | | Stabilization | | | | | | | | | Transportaion/Disposal > 33 ppm - Texas | | | | | | | | | Load RR Car | | 1,352,122 | \$ | 27.46 | CY | \$ | 37,125,461 | | Transportation/Disposal 33 ppm - Texas | · · · · · · · · · · · · · · · ·
· · · | 1 460 201 | Φ. | 2.44 | CV | ¢ | 2 564 492 | | Transportation/Beneficial Use (<10 ppm PCBs material) 952,862 \$ 30.89 lons \$ 23,874,255 Sediment Sample & Analysis 53,977 \$ 48,855 lons 52,871,255 Sediment Sample & Analysis 1 | | | | | | | | | Transportation/Beneficial Use (10 to 33 ppm PCBs material) Sademient Sample & Analysis Water Treatment 1 | | | | | | | | | Sediment Sample & Analysis 2,577,386 8 0.33 tons 5 817,538 Water Treatment 1 5 1,165,840 LS 5 1,165,840 Backfilling 441,174 5 5,00 CY 5 24,20,20 Capping 207 5 130,916,01 ACRES 5 374,496 Habitat & Vegetation Replacement 1 5 3,688,899 LS 5 3,648,89 Habitat & Vegetation Monitoring 1 5 3,646,654 LS 5 3,646,88 Construction Monitoring 1 5 3,646,654 LS 5 3,646,88 Fotal Capital Costs 5 5 5 5 5 O&M Costs 5 5 5 5 Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring 6 5 662,588 Event 5 3,975,52 Geophysical Survey (includes Multibeam Survey & Bathymetry) 6 5 662,588 Event 5 3,975,52 Geophysical Survey (includes Multibeam Survey & Bathymetry) 6 5 662,588 Event 5 3,975,52 Geophysical Survey (includes Multibeam Survey & Bathymetry) 25 5 3,4193 Year 5 8,482 Water Monitoring 25 5 3,4193 Year 5 8,482 Water Monitoring 25 5 3,497,912 Year 5 47,697,804 Post Construction Fevery 5 Years (for 25 years after construction is complete) 25 5 45,045 Year 5 1,126,12 Post Construction Fevery 5 Years (for 25 years after construction is complete) 5 5 1,384,231 Event 5 6,921,54 Five Pear Review 5 5 1,384,231 Event 5 6,921,54 Total O&M Costs 7 7 7 7 7 7 7 7 7 | | | | | | | 25,875,252 | | Water Treatment | * | | | | | | 857,300 | | Capping | | | | 1,165,840 | LS | | 1,165,840 | | Habitat & Vegetation Replacement 1 \$ 3,668,899 LS \$ 3,668,899 River Bank Stabilization 1 \$ 337,591 LS 3459,020,22 LS \$ 459,020,22 LS \$ 459,020,22 LS LS \$ 459,020,22 LS LS \$ 459,020,22 LS LS LS LS LS LS LS | Backfilling | 441,174 | | | | \$ | 24,262,928 | | River Bank Stabilization 1 \$ 337,591 LS \$ 337,591 Construction Monitoring 1 \$ 5,364,654 LS \$ 5,364,655 Construction Monitoring Conducted in Years 2009, 2012, 2017, 2022, 2027, 2022 Construction Sediment Monitoring Conducted in Years 2009, 2012, 2017, 2022, 2027, 2022 Cophysical Survey (includes Multibeam Survey & Bathymetry) 6 \$ 66,2588 Event \$ 3,975,52 Cophysical Survey (includes Multibeam Survey & Bathymetry) 6 \$ 360,130 Event \$ 2,160,78 Cap O&M (Visual Inspection) 25 \$ 34,193 Year \$ 854,82 Water Monitoring 25 \$ 1,097,121 Year \$ 147,697,80 Fish Monitoring 25 \$ 893,378 Year \$ 2,2334,45 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,15 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,15 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,5 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,5 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,5 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 \$ 1,384,231 Event \$ 6,921,5 Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 1,233,46,09 Event \$ 3,446,09 Event \$ 6,921,5 Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 1,233,46,09 Event | Capping | 207 | | 180,916.01 | ACRES | \$ | 37,449,614 | | Construction Monitoring Total Capital Costs O&M Costs Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring Geophysical Survey (includes Multibeam Survey & Bathymetry) Fish Monitoring Cap O&M (Visual Inspection) | | 1 | | | | | 3,668,899 | | S 459,020,22 | | | | , | | | 337,591 | | No. Commonstruction Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring Geophysical Survey (includes Multibeam Survey & Bathymetry) Geophysical Survey (includes Multibeam Survey) Geophysical Survey Geophysical Survey Geophysical Survey Geophysical Survey Geophysical Survey (includes Multibeam Survey) Geophysical Survey (includes Multibeam Survey) Geophysical Survey (includes Multibeam Survey & Bathymetry) Survey) Geophysical Survey (includes Multibeam Survey) Geophysical Survey (includes Multibeam Survey) Geophysical Survey (includes Multibeam Survey) Geophys | = | 1 | \$ | 5,364,654 | LS | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring 6 5 662,588 Event 5 3,975,52 Goephysical Survey (includes Multibeam Survey & Bathymetry) 6 5 360,130 Event 5 2,160,78 Post Construction O&M - Annual (for 25 years after construction is complete) 25 5 34,193 Year 5 854,82 Water Monitoring 25 5 1,907,912 Year 5 47,697,80 Fish Monitoring 25 5 45,045 Year 5 22,334,45 Annual Reporting 25 5 45,045 Year 5 1,26,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 25 5 45,045 Year 5 1,26,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 5 5 139,504 Event 5 69,21,15 Modeling 5 5 139,504 Event 5 697,52 Five-Year Review 5 5 139,504 Event 5 697,52 Five-Year Review 5 5 76,856 Event 5 807,52 Total O&M Costs 76,856 Event 5 80,152,46 Present Worth of 76,856 Present Worth of Costs 76,856 Event 76,856 | Total Capital Costs | | | | | \$ | 459,020,228 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring 6 5 662,588 Event 5 3,975,52 Goephysical Survey (includes Multibeam Survey & Bathymetry) 6 5 360,130 Event 5 2,160,78 Post Construction O&M - Annual (for 25 years after construction is complete) 25 5 34,193 Year 5 854,82 Water Monitoring 25 5 1,907,912 Year 5 47,697,80 Fish Monitoring 25 5 45,045 Year 5 22,334,45 Annual Reporting 25 5 45,045 Year 5 1,26,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 25 5 45,045 Year 5 1,26,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 5 5 139,504 Event 5 69,21,15 Modeling 5 5 139,504 Event 5 697,52 Five-Year Review 5 5 139,504 Event 5 697,52 Five-Year Review 5 5 76,856 Event 5 807,52 Total O&M Costs 76,856 Event 5 80,152,46 Present Worth of 76,856 Present Worth of Costs 76,856 Event 76,856 | O&M Costs | | | | | | | | Sediment Monitoring | | l
)27-2032 | | | | | | | Geophysical Survey (includes Multibeam Survey & Bathymetry) 6 5 360,130 Event 5 2,160,78 Post Construction O&M - Annual (for 25 years after construction is complete) 25 5 1,907,912 Water Monitoring 25 5 1,907,912 Year 5 854,82 Water Monitoring 25 5 893,378 Year 5 22,334,45 Annual Reporting 25 5 45,045 Year 5 1,126,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 25 5 45,045 Year 5 1,126,12 Post Construction - Every 5 Years (for 25 years after construction is complete) 5 5 139,504 Event 5 697,52 Annual Cap Repair and Side Scan Sonar Survey 5 5 76,856 Event 5 697,52 Five-Year Review 5 5 76,856 Event 5 804,128 Total O&M Costs 7 7 7 7 7 7 Present Worth of Costs 7 7 7 7 7 7 7 7 7 Present Worth of Costs 7 7 7 7 7 7 7 7 7 | | | \$ | 662,588 | Event | \$ | 3,975,528 | | Cap O&M (Visual Inspection) | <u> </u> | | | | | | 2,160,780 | | Water Monitoring 25 \$ 1,907,912 Year \$ 47,697,80 Fish Monitoring 25 \$ 893,378 Year \$ 22,334,45 \$ Annual Reporting 25 \$ 893,378 Year \$ 22,334,45 \$ Annual Reporting 25 \$ 45,045 Year \$ 1,126,12 \$ 1,26,12 \$ | Post Construction O&M - Annual (for 25 years after construction is complete) | | | | | | | | Fish Monitoring | Cap O&M (Visual Inspection) | | | , | Year | | 854,825 | | Annual Reporting | | | | | | | 47,697,800 | | Post Construction - Every 5 Years (for 25 years after construction is complete) Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 1,384,231 Event \$ 6,921,15 Modeling | e e e e e e e e e e e e e e e e e e e | | | | | \$ | 22,334,450 | | Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 1,384,231 Event 5 6,921,15 Modeling 5 139,504 Event 5 697,52 Five-Year Review 5 76,856 Event 5 886,152,46 Total O&M Costs 5 76,856 Event 5 886,152,46 Annual O&M (for 25 years over O&M period of 2009 through 2033) 8 8 8,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Present Worth of Costs 5
76,856 Event 5 886,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Present Worth of Costs 5 76,856 Event 5 886,152,46 Says and the second of the second of 2009 through 2033 5 90,36,95 Present Worth of Costs 5 13,012,95 Post Construction Studies and Design 5 13,012,95 Post Construction Studies and Design 5 12,033,36 Geophysical Survey (includes Multibeam Survey & Bathymetry) 5 670,35 Post Construction O&M - Annual (Years 2009 to 2033) 5 239,86 Water Monitoring 5 239,86 Water Monitoring 5 239,86 Annual Reporting 5 6,267,16 Post Construction - Every 5 Years (Years 2009 to 2033) 5 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) 5 5 Cap O&M (Cap Repair and Side Scan Sonar Survey) 5 1,695,46 Modeling 5 170,87 Five-Year Review 5 338,083,52 Total Present Worth Costs for Alternative 338,083 | | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Modeling 5 \$ 139,504 Event \$ 697,52 \$ 76,856 Event \$ 384,52 \$ 86,152,24 \$ 8 \$ 8 \$ 86,152,24 \$ 8 \$ \$ 8 \$ \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ 8 \$ \$ 8 \$ 8 \$ 8 \$ \$ 8 \$ \$ | | = | Φ. | 1 204 221 | F4 | ¢. | C 021 155 | | Five-Year Review 5 \$ 76,856 Event \$ 384,28 \$ 86,152,46 \$ 8 | | | | | | | | | Section | | | | | | | | | Annual O&M (for 25 years over O&M period of 2009 through 2033) \$ 3,446,09 | | 3 | Ψ | 70,050 | Lvent | | 86,152,463 | | Pre-Construction Studies and Design \$ 13,012,95 Design Support Testing (Year 2002) \$ 13,012,95 Design (includes Treatability Study and Model Development) (Year 2003) \$ 9,036,95 Construction (Years 2004 to 2008) \$ 291,962,13 Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 \$ 1,233,36 Geophysical Survey (includes Multibeam Survey & Bathymetry) \$ 670,35 Post Construction O&M - Annual (Years 2009 to 2033) \$ 239,86 Cap O&M (Visual Inspection) \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | | | | | | | 3,446,099 | | Pre-Construction Studies and Design \$ 13,012,95 Design Support Testing (Year 2002) \$ 13,012,95 Design (includes Treatability Study and Model Development) (Year 2003) \$ 9,036,95 Construction (Years 2004 to 2008) \$ 291,962,13 Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 \$ 1,233,36 Geophysical Survey (includes Multibeam Survey & Bathymetry) \$ 670,35 Post Construction O&M - Annual (Years 2009 to 2033) \$ 239,86 Cap O&M (Visual Inspection) \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | | | | | | | | | Design Support Testing (Year 2002) Design (includes Treatability Study and Model Development) (Year 2003) \$ 13,012,95 | | | | | | | | | Design (includes Treatability Study and Model Development) (Year 2003) \$ 9,036,95 | | | | | | ١. | | | Construction (Years 2004 to 2008) Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring | | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 Sediment Monitoring \$ 1,233,36 Geophysical Survey (includes Multibeam Survey & Bathymetry) \$ 670,35 Post Construction O&M - Annual (Years 2009 to 2033) \$ 239,86 Water Monitoring \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 338,083,52 Total Present Worth Costs for Alternative \$ 338,083,52 Substitution - Section - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2032 \$ 1,233,36 \$ 1,233,36 \$ 1,233,36 \$ 1,233,36 \$ 1,233,36 \$ 239,86 \$ 239,86 \$ 13,384,25 | | | | | | \$ | | | Sediment Monitoring | · · · · · · · · · · · · · · · · · · · | 2022 | | | | Э | 291,962,137 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) Post Construction O&M - Annual (Years 2009 to 2033) Cap O&M (Visual Inspection) \$ 239,86 Water Monitoring \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 Standard Survey (Includes Multibeam Survey) \$ 338,083,52 Standard Survey (Includes Multibeam Survey) \$ 670,35 Standard Survey (Includes Multibeam Survey) \$ 13,884,25 Standard Survey (Includes Multibeam Survey) \$ 1,695,46 S | | 127, 2032 | | | | \$ | 1 233 363 | | Post Construction O&M - Annual (Years 2009 to 2033) Cap O&M (Visual Inspection) \$ 239,86 Water Monitoring \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | <u> </u> | | | | | | | | Cap O&M (Visual Inspection) \$ 239,86 Water Monitoring \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 170,87 Modeling \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | | | | | | Ψ | 0,0,000 | | Water Monitoring \$ 13,384,25 Fish Monitoring \$ 6,267,16 Annual Reporting \$ 315,99 Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 170,87 Modeling \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | · | | 1 | | | \$ | 239,868 | | Annual Reporting Post Construction - Every 5 Years (Years 2009 to 2033) Cap O&M (Cap Repair and Side Scan Sonar Survey) Modeling Five-Year Review Total Present Worth Costs for Alternative \$ 315,99 \$ 1,695,46 \$ 170,87 \$ 94,13 | | | 1 | | | \$ |
13,384,257 | | Post Construction - Every 5 Years (Years 2009 to 2033) \$ 1,695,46 Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 170,87 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | e e e e e e e e e e e e e e e e e e e | | | | | | 6,267,166 | | Cap O&M (Cap Repair and Side Scan Sonar Survey) \$ 1,695,46 Modeling \$ 170,87 Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | | | 1 | | | \$ | 315,997 | | Modeling \$ 170,87 | · · · · · · · · · · · · · · · · · · · | | 1 | | | _ | | | Five-Year Review \$ 94,13 Total Present Worth Costs for Alternative \$ 338,083,52 | | | 1 | | | | | | Total Present Worth Costs for Alternative \$ 338,083,52 | č | | | | | | | | | Five-Year Review | | | | | 3 | 94,136 | | Round To \$ 239 000 00 | Total Present Worth Costs for Alternative | | | | | \$ | 338,083,522 | | | Round To | | | | | \$ | 338,000,000 | Table 8-9 Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: REM-3/10/Select | River Section/Parameter | Target Criteria | Contaminant
Removal | Channel
Dredging | Total | |-------------------------------|-----------------------|------------------------|---------------------|-----------| | THE BOOKING ANALOGO | | | | | | River Section 1 | | | | | | Area Remediated (Acres) | 3 g/m^2 | 266 | 15 | 282 | | Volume Sediments Removed (CY) | 3 g/m^2 | 1,495,300 | 66,100 | 1,561,400 | | PCB Mass Removed (kg) | 3 g/m^2 | 11,600 | 200 | 11,800 | | River Section 2 | | | | | | Area Remediated (Acres) | 10 g/m^2 | 74 | 2 | 76 | | Volume Sediments Removed (CY) | 10 g/m^2 | 564,700 | 15,400 | 580,100 | | PCB Mass Removed (kg) | 10 g/m^2 | 23,600 | 700 | 24,300 | | River Section 3 | | | | | | Area Remediated (Acres) | HS 36, 37, part of 39 | 92 | 43 | 135 | | Volume Sediments Removed (CY) | HS 36, 37, part of 39 | 392,900 | 117,300 | 510,200 | | PCB Mass Removed (kg) | HS 36, 37, part of 39 | 6,700 | 2,800 | 9,500 | | Total for alternative | | | | | | Area Remediated (Acres) | | 432 | 61 | 493 | | Volume Sediments Removed (CY) | | 2,452,900 | 198,800 | 2,651,700 | | PCB Mass Removed (kg) | | 41,900 | 3,700 | 45,600 | # Table 8-10a Engineering Parameters: REM-3/10/Select (Mechanical Removal) | | Sediment Volume | PCB | 3 >33ppm | 1,113 | |-----------------------|----------------------------|----------------------------------|---------------------|--------| | al
J | Removed | PCE | 3< 33ppm | 1,539 | | anic
10va | $(x10^3 cy)$ | PCE | 3<10 ppm | 928 | | Mechanical
Removal | | Tota | l Volume | 2,652 | | \mathbf{Z} | Removal | Numbe | r of Dredges | 4 | | | Operations | Total Dr | edging Hours | 48,600 | | tion | Transportation | Barge Lo | oads to SF/Day | 4 | | orta | in River ¹ | Barge Lo | ads to NF/Day | 8-9 | | Transportation | Transportation | Rail Cars | 29 | | | Tr | on Land ¹ | Rail Cars | From NF/Day | 16 | | | - · · · · · | 0 "" | Sand | 327 | | | Backfill
Quantities | Quantities (x10 ³ cy) | Gravel | 327 | | | | ` ', | Silty Material | 197 | | Reconstruction | | | Total | 851 | | truc | Ch!: | < 2' - H | lydroseeding | 17 | | ons | Shoreline
Stabilization | 2-2.5' - Veg | getative Mattress | 47 | | Rec | in (x10 ³ LF) | > 3.0' - Veg. M | attress & Revetment | 27 | | | | | Total | 91 | | | Planting | | ype A ² | 22 | | | in Acres | | ype B ² | 22 | | | | T | ype C ² | 55 | | | | | Total | 99 | - 1. SF and NF refer to southern and northern transfer facilities, respectively - 2. Type A Critical area/shallow rooted vegetation - Type B- Critical area/emergent vegetation - Type C- Shallow area planting # Table 8-10b Engineering Parameters: REM-3/10/Select (Hydraulic Removal) | | C. P V. L | Р | CB >33ppm | 1,118 | |--------------------|---------------------------------------|---------------------------------|--------------------------------|--------| | su | Sediment Volume
Removed | P | CB< 33ppm | 1,534 | | atio | $(x10^3 \text{ cy})$ | P | CB< 10ppm | 928 | | per | | Т | otal Volume | 2,652 | | al 0 | Mechanical Removal | Num | 3 | | | Removal Operations | Operations | Total | Dredging Hours | 14,400 | | Re | Hydraulic Removal | Num | nber of Dredges | 1 | | | Operations | Total | Dredging Hours | 10,260 | | | Transportation | Barge | Loads to SF/Day
(Year 1) | 6 | | ıtion | in River ^{1,3} | _ | Loads to SF/Day
(Years 2-5) | 3 | | oorta | | Barge Loads to NF/Day | | 0 | | Transportation | The same delta | Rail Cars F | 43 | | | I | Transportation on Land ^{1,3} | Rail Cars Fr | 26 | | | | | Rail Cars Fro | 16 | | | | T 1 (41) | 0 | Sand | 327 | | | Backfill
Quantities | Quantities $(x10^3 \text{ cy})$ | Gravel | 327 | | | | | Silty Material | 197 | | econstruction | | | Total | 851 | | truc | | < 2' | - Hydroseeding | 17 | | onsi | Shoreline Stabilization | 2-2.5' - V | Vegetative Mattress | 47 | | Rec | in (x10 ³ LF) | > 3.0' - Veg. | Mattress & Revetment | 27 | | | | | Total | 91 | | | Planting | | Type A ² | 22 | | | Planting
in Acres | | Type B ² | 22 | | | | | Type C ² | 55 | | | | | Total | 99 | - 1. SF and NF refer to southern and northern transfer facilities, respectively - 2. Type A Critical area/shallow rooted vegetation - Type B- Critical area/emergent vegetation - Type C- Shallow area planting - 3. It has been assumed that mechanical dredging equipment will be used in River Section 3 during the first construction season Table 8-11a Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|------------------------|----------|------------|----------|----------------|--------------------------| | | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | 14055 000 | * 0 | | 14055000 | | Design Support Testing Design (includes Treatability Study and Model Development) | 1 | \$
\$ | 14,857,830 | LS
LS | \$
\$ | 14,857,830
11,007,500 | | Construction | 1 | 3 | 11,007,500 | LS | Э | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 2,651,730 | \$ | 20.67 | CY | \$ | 54,822,487 | | Testing and Monitoring (during remediation) | 1 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 2,651,730 | \$ | 21.49 | CY | \$ | 56,987,426 | | Stabilization Transport (I and SH Free | 2,651,730 | \$ | 25.90 | CY | \$ | 68,679,950 | | Transport/Landfill Fee
Load RR Car | 2 962 969 | \$ | 2.44 | CY | \$ | 6,990,528 | | Transportation/Disposal >33 ppm - Texas | 2,863,868
1,682,659 | \$ | 119.20 | tons | \$ | 200,571,817 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 1,513,754 | \$ | 55.16 | tons | \$ | 83,493,373 | | Sediment Sample & Analysis | 4,099,416 | \$ | 0.41 | tons | \$ | 1,681,305 | | Water Treatment | 1 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | 48,750,306 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | \$ | 658,379,928 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | ' | , | | ļ ['] | , ,, ,, | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | Event | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | Э | 3,201,230 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 426,322,045 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | d. | 7.004.220 | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring
Annual Reporting | | | | | \$
\$ | 3,743,290
188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | φ | 100,740 | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | | | | | | - | 20,220 | | Total Present Worth Costs for Alternative | | \perp | | | \$ | 461,856,907 | | | | | | | | | | Round To | | | | | \$ | 460,000,000 | Table 8-11b Cost Analysis - Beneficial Use of Non-TSCA Material Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|------------------------|----------
----------|------------------------| | | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | 11055.000 | | | 44055000 | | Design Support Testing | 1 | \$ | 14,857,830 | LS | \$ | 14,857,830 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 4 | d. | 262 674 | T.C. | ф | 262 674 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1
1 | \$
\$ | 3,350,454
9,321,669 | LS
LS | \$
\$ | 3,350,454
9,321,669 | | Construction Management Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - North | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 2,651,730 | \$ | 20.67 | CY | \$ | 54,822,487 | | Testing and Monitoring (during remediation) | 1 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 2,041,015 | \$ | 22.23 | CY | \$ | 45,375,826 | | Stabilization | 2,041,015 | \$ | 26.38 | CY | \$ | 53,851,681 | | Transport/Landfill Fee | _,, | _ | | | | ,, | | Load RR Car | 2,204,296 | \$ | 2.44 | CY | \$ | 5,380,553 | | Transportation/Disposal >33 ppm - Texas | 1,682,659 | \$ | 119.20 | tons | \$ | 200,571,817 | | Transportation/Beneficial Use (<10 ppm PCBs material) | 1,403,355 | \$ | 30.89 | tons | \$ | 43,346,324 | | Transportation/Beneficial Use (10 to 33 ppm PCBs material) | 855,001 | \$ | 47.41 | tons | \$ | 40,531,904 | | Sediment Sample & Analysis | 3,941,016 | \$ | 0.33 | tons | \$ | 1,294,087 | | Water Treatment | 1 | \$ | 1,106,530 | LS | \$ | 1,106,530 | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | 48,750,306 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | \$ | 585,483,999 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | J | Ψ. | 370,100 | D voin | Ψ | 1,120,100 | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | Event | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 377,189,358 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | ,, | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | | | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | | | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | Total Present Worth Costs for Alternative | | | | | \$ | 412,724,221 | | | | 1 | | | | ,· ,-== | | Round To | | 1 | | | \$ | 413,000,000 | Table 8-11c Cost Analysis - Hydraulic Dredging Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |--|------------------------|----|------------|--------------|----------|-------------------------| | Conttol Costs | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | 1 | ď | 14 057 020 | 1.0 | d. | 14 057 020 | | Design Support Testing | 1 | \$ | 14,857,830 | LS | \$
\$ | 14,857,830 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | Э | 11,007,500 | | Construction Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | | 1 | \$ | 36,112,752 | LS | \$ | 36,112,752 | | Site Prep and Facility Construction - North Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 2,651,730 | \$ | 16.70 | CY | \$ | 44,285,908 | | Testing and Monitoring (during remediation) | 2,031,730 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 1,623,030 | \$ | 27.26 | CY | \$ | 44,249,277 | | Dewater Hydraulic Dredged Material | 2,141,527 | \$ | 15.15 | CY | \$ | 32,437,386 | | Transportation to Transfer Facility and Stabilization | 510,203 | \$ | 70.42 | CY | \$ | 35,928,810 | | Transport/Landfill Fee | 310,203 | Ф | 70.42 | Ci | Ф | 33,928,610 | | <u>*</u> | 2 602 546 | \$ | 2.44 | CY | \$ | 6,572,342 | | Load RR Car Transportation/Disposal >33 ppm - Texas | 2,692,546
1,587,067 | \$ | 119.20 | | \$ | 189,177,315 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons
tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Northeast Transportation/Disposal <33 ppm - Southeast | · · | \$ | 55.16 | | \$ | 75,536,441 | | Sediment Sample & Analysis | 1,369,493
3,769,561 | \$ | 0.45 | tons
tons | \$ | 1,681,305 | | Water Treatment1 | 3,709,301 | \$ | 2,359,116 | LS | \$ | 2,359,116 | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 48,750,306
3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | 1 | Ф | 3,304,034 | Lo | \$ | 637,297,868 | | Total Capital Costs | | | | | Ψ | 037,277,000 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | EA | \$ | 1,128,465 | | Post Construction O&M - Annual | | 1 | 270,100 | 2.1 | " | 1,120,100 | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years | 10 | 1 | 15,615 | 1000 | " | .50,.50 | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | _ | _ | , | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | | | | | | - | 0,200,200 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 412,112,496 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | ' | , , , | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 779,699 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | ' | , | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | 1 | ,0 | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | | | | | | 1 | , | | Total Present Worth Costs for Alternative | | | | | \$ | 447,925,023 | | Round To | | | | | \$ | 448,000,000 | Table 8-12 Areas of Sediments, Volumes of Sediments, and Mass of PCBs Remediated: REM-0/0/3 | River Section/Parameter | Target Criteria | Contaminant
Removal | Channel
Dredging | Total | |-------------------------------|-----------------|------------------------|---------------------|------------| | | | | | | | River Section 1 | | | | | | Area Remediated (Acres) | Full section | 470 | - | 470 | | Volume Sediments Removed (CY) | Full section | 2,029,500 | - | 2,029,500 | | PCB Mass Removed (kg) | Full section | 15,000 | - | 15,000 | | River Section 2 | | | | | | Area Remediated (Acres) | Full section | 316 | - | 316 | | Volume Sediments Removed (CY) | Full section | 1,105,200 | - | 1,105,200 | | PCB Mass Removed (kg) | Full section | >35,000 (1) | - | >35,000 (1 | | River Section 3 | | | | | | Area Remediated (Acres) | 3 g/m^2 | 134 | 43 | 177 | | Volume Sediments Removed (CY) | 3 g/m^2 | 571,100 | 117,300 | 688,400 | | PCB Mass Removed (kg) | 3 g/m^2 | 10,700 | 2,800 | 13,500 | | Total for alternative | | | | | | Area Remediated (Acres) | | 921 | 43 | 964 | | Volume Sediments Removed (CY) | | 3,705,800 | 117,300 | 3,823,100 | | PCB Mass Removed (kg) | | >60,700 | 2,800 | >63,500 | #### NOTES: 1 This estimate combines the 1994 data for areas >3g/m^2 with the 1977 data for areas <3g/m^2. Because of the uncertainties associated with the 1977 data (*i.e.*, shallow
coring depths and potential sediment inventory changes), one half of the mass estimated from the 1977 data (3.65 of 7.3 metric tons) was used as a part of the lower bound estimate given here. # Table 8-13a Engineering Parameters: REM-0/0/3 (Mechanical Removal) | | Sediment Volume | PCB | 3 >33ppm | 1,415 | |-----------------------|----------------------------|---------------------------------|---------------------|--------| | al
I | Removed | PCB | 3< 33ppm | 2,408 | | Mechanical
Removal | $(x10^3 cy)$ | PCB | 3 < 10ppm | 1501 | | lech
Ren | | Tota | 3,823 | | | \mathbf{Z} | Removal | Numbe | r of Dredges | 5 | | | Operations | Total Dr | edging Hours | 73,080 | | ion | Transportation | Barge Lo | oads to SF/Day | 4 | | ortal | in River ¹ | Barge Lo | 8 | | | Transportation | Transportation | Rail Cars | From SF/Day | 30 | | Tr | on Land ¹ | Rail Cars | 16 | | | | | 0 | Sand | 617 | | | Backfill
Quantities | Quantities $(x10^3 \text{ cy})$ | Gravel | 617 | | | | ` ', | Silty Material | 245 | | tion | | | Total | 1,479 | | truc | GL | < 2' - H | lydroseeding | 93 | | Reconstruction | Shoreline
Stabilization | 2-2.5' - Veg | getative Mattress | 50 | | Rec | in (x10 ³ LF) | > 3.0' - Veg. M | attress & Revetment | 32 | | | · · · · | | Total | 175 | | | Planting | | ype A ² | 37 | | | in Acres | | ype B ² | 37 | | | | T | ype C ² | 114 | | | | , | Total | 188 | - 1. SF and NF refer to southern and northern transfer facilities, respectively - 2. Type A Critical area/shallow rooted vegetation - Type B- Critical area/emergent vegetation - Type C- Shallow area planting # Table 8-13b Engineering Parameters: REM-0/0/3 (Hydraulic Removal) | | | PCR | 3 >33ppm | 1,415 | |--------------------|-------------------------------|----------------------|---------------------|--------| | Ω | Sediment Volume | | 3< 33ppm | 2,498 | | tion | Removed (x10 ³ cy) | | 3< 10ppm | 1,591 | | bera | (XIV Cy) | | l Volume | 3,913 | | II O | Mechanical Removal | Numbe | r of Dredges | 3 | | Removal Operations | Operations | Total Dr | edging Hours | 20,160 | | Re | Hydraulic Removal | Numbe | r of Dredges | 1 | | | Operations | Total Dr | edging Hours | 17,100 | | | Transportation | Barge Loads to | SF/Day (Years 1-2) | 4 | | ion | in River ^{1,3} | Barge Loads to | SF/Day (Years 3-7) | 4 | | Transportation | | Barge Lo | ads to NF/Day | 0 | | ansp. | Transportation | Rail Cars From | SF/Day (Years 1-2) | 29 | | Tr | on Land 1,3 | Rail Cars From | 34 | | | | | Rail Cars From | NF/Day (Years 3-7) | 16 | | | D. J.e. | Quantities | Sand | 617 | | | Backfill
Quantities | $(x10^3 \text{ cy})$ | Gravel | 617 | | | | (| Silty Material | 245 | | tion | | | Total | 1,479 | | Reconstruction | | < 2' - H | ydroseeding | 93 | | sons | Shoreline Stabilization | 2-2.5' - Veg | getative Mattress | 50 | | Rec | in (x10 ³ LF) | > 3.0' - Veg. M | attress & Revetment | 32 | | | | | Γotal | 175 | | | Planting | | ype A ² | 37 | | | in Acres | | ype B ² | 37 | | | | | ype C ² | 114 | | | | , | Total | 188 | - 1. SF and NF refer to southern and northern transfer facilities, respectively - 2. Type A Critical area/shallow rooted vegetation - Type B- Critical area/emergent vegetation - Type C- Shallow area planting - 3. It has been assumed that Mechanical Equipment will be used in River Section 3 during the first two construction seasons Table 8-14a Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|------------|------|----|-------------| | Conttol Costs | | | | | | | | Capital Costs Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 1 | Ψ | 11,007,500 | Lis | Ψ | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging | 3,823,060 | \$ | 22.76 | CY | \$ | 87,021,936 | | Testing and Monitoring (during remediation) | 1 | \$ | 20,172,039 | LS | \$ | 20,172,039 | | Barging | 3,823,060 | \$ | 22.45 | CY | \$ | 85,829,051 | | Stabilization | 3,823,060 | \$ | 25.85 | CY | \$ | 98,838,282 | | Transport/Landfill Fee | | | | | | | | Load RR Car | 4,128,905 | \$ | 2.44 | CY | \$ | 10,078,407 | | Transportation/Disposal >33 ppm - Texas | 2,140,433 | \$ | 119.20 | tons | \$ | 255,138,169 | | Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm - Southeast | 2,506,034 | \$ | 55.16 | tons | \$ | 138,224,064 | | Sediment Sample & Analysis | 5,780,467 | \$ | 0.42 | tons | \$ | 2,423,976 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | 76,118,770 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 929,395,662 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | Ψ | 073,302 | La i | Ψ | 2,020,710 | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | - | 10,010 | | T | , | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 33,504,580 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,350,458 | | Descent Worth of Costs | | | | | | | | Present Worth of Costs Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 533,693,749 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | Ψ | 333,073,747 | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | Ψ | 1,105,720 | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring | | | | | \$ | 3,282,030 | | Annual Reporting | | 1 | | | \$ | 165,483 | | Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | " | , | | Modeling | | | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | | | | | | | | | Total Present Worth Costs for Alternative | | <u> </u> | | | \$ | 568,671,820 | | Round To | | | | | \$ | 570,000,000 | Table 8-14b Cost Analysis - Beneficial Use of Non-TSCA Material Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |--|------------------------|----------|-----------------|--------------|----------|---------------------------| | G ** 1 G ** | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design Support Testing Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 1 | Ψ | 11,007,300 | L | Ψ | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging | 3,823,060 | \$ | 22.76 | CY | \$ | 87,021,936 | | Testing and Monitoring (during remediation) | 1 | \$ | 20,172,039 | LS | \$ | 20,172,039 | | Barging | 2,916,189 | \$ | 23.41 | CY | \$ | 68,267,376 | | Stabilization | 2,916,189 | \$ | 26.47 | CY | \$ | 77,188,008 | | Transport/Landfill Fee | 2 140 494 | d. | 2.44 | CV | d. | 7 697 700 | | Load RR Car | 3,149,484 | \$ | 2.44 | CY | \$
\$ | 7,687,700 | | Transportation/Disposal >33 ppm - Texas Transportation/Beneficial Use (<10 ppm PCBs material) | 2,140,433
2,268,845 | \$
\$ | 119.20
25.86 | tons
tons | \$ | 255,138,169
58,666,358 | | Transportation/Beneficial Use (10 to 33 ppm PCBs material) Transportation/Beneficial Use (10 to 33 ppm PCBs material) | 1,269,619 | \$ | 47.41 | tons | \$ | 60,187,063 | | Sediment Sample & Analysis | 5,678,897 | \$ | 0.43 | tons | \$ | 2,423,976 | | Water Treatment | 1 | \$ | 1,548,535 | LS | \$ | 1,548,535 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | 76,118,770 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring
 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 805,872,821 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | ١. | | | | | | Modeling Fig. 17 | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$
\$ | 33,504,580
3,350,458 | | Annual Own (for 10 years over Own period of 2009 through 2010) | | | | | ф | 3,330,436 | | Present Worth of Costs | | | | | 1 | | | Pre-Construction Studies and Design | | | | | 1 | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 460,696,989 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | Φ. | 775 254 | | Sediment Monitoring | | | | | \$
\$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) Post Construction O&M - Annual (Years 2011 to 2020) | | | | | ф | 1,165,926 | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring | | | | | \$ | 3,282,030 | | Annual Reporting | | | | | \$ | 165,483 | | Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | 1 | | | Modeling | | | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | Total Present Worth Costs for Alternative | | | | | \$ | 495,675,060 | | | | 1 | | | 7 | | | Round To | | | | | \$ | 496,000,000 | Table 8-14c Cost Analysis - Hydraulic Dredging Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|------------------------|----|------------|--------------|----|-------------------------| | Conital Costs | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | 1 | ф. | 15 200 250 | 1.0 | ф | 15 200 250 | | Design Support Testing | 1
1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | Э | 11,007,500 | | Construction Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 36,112,752 | LS | \$ | 36,112,752 | | Site Prep and Facility Construction - North | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging | 3,913,060 | \$ | 17.01 | CY | \$ | 66,571,820 | | Testing and Monitoring (during remediation) | 3,913,000 | \$ | 20,172,039 | LS | \$ | 20,172,039 | | Barging | 2,472,880 | \$ | 26.41 | CY | \$ | 65,312,999 | | Dewater Hydraulic Dredged Material | 3,224,706 | \$ | 15.15 | CY | \$ | 48,844,134 | | Transportation to Transfer Facility and Stabilization | 688,354 | \$ | 76.47 | CY | \$ | 52,641,451 | | Transport/Landfill Fee | 000,334 | Ф | 70.47 | CI | Ф | 32,041,431 | | Load RR Car | 3,968,128 | \$ | 2.44 | CY | \$ | 9,685,821 | | Transportation/Disposal >33 ppm - Texas | 2,065,463 | \$ | 119.20 | tons | \$ | 246,201,795 | | Transportation/Disposal <33 ppm - Texas Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm - Northeast Transportation/Disposal <33 ppm - Southeast | | \$ | 55.16 | | \$ | 129,944,026 | | Sediment Sample & Analysis | 2,355,915
5,555,378 | \$ | 0.45 | tons
tons | \$ | 2,481,039 | | Water Treatment | 1 | \$ | 3,056,877 | LS | \$ | 3,056,877 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | | | Habitat & Vegetation Replacement | 1,470,030 | \$ | 7,255,607 | LS | \$ | 76,118,770
7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,476 | LS | \$ | 1,472,476 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | 1 | Ф | 0,292,003 | LS | \$ | 896,055,967 | | Total Capital Costs | | | | | φ | 890,033,907 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA
EA | \$ | 2,620,746 | | Post Construction O&M - Annual | 3 | Ф | 673,362 | LA | φ | 2,020,740 | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years | 10 | Ф | 45,045 | 1 Cai | φ | 430,430 | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | 2 | Ф | 70,830 | LA | \$ | 33,504,580 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,350,458 | | Amual Oct 10 years over Oct period of 2009 through 2016) | | | | | φ | 3,330,436 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 513,991,403 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | Ψ | 313,771,403 | | Sediment Monitoring - Conducted in Tears 2011, 2014, 2017 | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,706,826 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | Ψ | 1,700,020 | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring | | | | | \$ | 3,282,030 | | Annual Reporting | | | | | \$ | 165,483 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | Ψ | 105,465 | | Modeling | | | | | \$ | 89,482 | | Modeling Five-Year Review | | | | | \$ | 89,482
49,298 | | 1 TVC- 1 Cal INCVICW | | | | | φ | 49,498 | | Total Present Worth Costs for Alternative | | | | | \$ | 549,510,375 | | Round To | | | | | \$ | 550,000,000 | # HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY ## LIST OF TABLES CHAPTER 9 | 9-1 Comparison of Costs | | |-------------------------|--| |-------------------------|--| - 9-2 Non-TSCA Safety Margin Sensitivity Analysis: Disposal Quantities - 9-3a Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative CAP-3/10/Select - 9-3b Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative REM-3/10/Select - 9-3c Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative REM-0/0/3 - 9-4 Remediation Boundary Adjustment Sensitivity Analysis: Quantities - 9-5a Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Plus 50 Feet): Cost Analysis Alternative CAP-3/10/Select - 9-5b Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative CAP-3/10/Select - 9-5c Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Plus 50 Feet): Cost Analysis Alternative REM-3/10/Select - 9-5d Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative REM-3/10/Select - 9-5e Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Plus 50 Feet): Cost Analysis Alternative REM-0/0/3 - 9-5f Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative REM-0/0/3 - 9-6 Cap Thickness Reduction Sensitivity Analysis: Quantities - 9-7 Cap Thickness Reduction Sensitivity Analysis: Cost Analysis Alternative CAP-3/10/Select - 9-8 Depth of Removal Adjustment Sensitivity Analysis: Quantities - 9-9a Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Plus 1 Foot): Cost Analysis - Alternative REM-3/10/Select - 9-9b Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Minus 1 Foot): Cost Analysis - Alternative REM-3/10/Select - 9-9c Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Plus 1 Foot): Cost Analysis Alternative REM-0/0/3 - 9-9d Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Minus 1 Foot): Cost Analysis Alternative REM-0/0/3 - 9-10 Summary of Cost Sensitivity Analyses Table 9-1 Comparison of Costs Base Case Alternatives - Mechanical Removal and Landfill Disposal | Alternative | Tota | al Capital Costs | esent Worth of
Capital Costs | То | otal O&M Costs | A | Average Annual
O&M Costs |] | Present Worth of
O&M Costs | To | otal Project Costs | esent Worth of
Project Costs | Present Worth of
Project Costs -
Rounded | |-------------------------------|------|------------------|---------------------------------|----|----------------|----|-----------------------------|----|-------------------------------|----|--------------------|---------------------------------|--| | No Action | \$ | - | \$
- | \$ | 461,136 | \$ | 15,371 | \$ | 139,555 | \$ | 461,136 | \$
139,555 | \$
140,000 | | Monitored Natural Attenuation | \$ | 507,500 | \$
416,648 | \$ |
108,390,470 | \$ | 3,613,016 | \$ | 38,239,077 | \$ | 108,897,970 | \$
38,655,726 | \$
39,000,000 | | Alternative CAP-3/10/Select | \$ | 504,126,401 | \$
344,414,122 | \$ | 86,152,463 | \$ | 3,446,099 | \$ | 24,071,475 | \$ | 590,278,864 | \$
368,485,596 | \$
370,000,000 | | Alternative REM-3/10/Select | \$ | 658,379,928 | \$
448,386,006 | \$ | 32,012,299 | \$ | 3,201,230 | \$ | 13,470,902 | \$ | 690,392,227 | \$
461,856,907 | \$
460,000,000 | | Alternative REM-0/0/3 | \$ | 929,395,662 | \$
556,135,092 | \$ | 33,504,580 | \$ | 3,350,458 | \$ | 12,536,728 | \$ | 962,900,242 | \$
568,671,820 | \$
570,000,000 | #### **Beneficial Use Alternatives** | Alternative | Total Capital Costs -
Beneficial Use | Present Worth of Capital Costs - Beneficial Use | Total O&M Costs -
Beneficial Use | Average Annual
O&M Costs -
Beneficial Use | Present Worth of
O&M Costs -
Beneficial Use | Total Project Costs -
Beneficial Use | Present Worth of
Project Costs -
Beneficial Use | Present Worth of
Project Costs -
Beneficial Use -
Rounded | |-------------------------------|---|---|-------------------------------------|---|---|---|---|--| | No Action | NA | Monitored Natural Attenuation | NA | Alternative CAP-3/10/Select | \$ 459,020,228 | \$ 314,012,047 | \$ 86,152,463 | \$ 3,446,099 | \$ 24,071,475 | \$ 545,172,691 | \$ 338,083,522 | \$ 338,000,000 | | Alternative REM-3/10/Select | \$ 585,483,999 | \$ 399,253,319 | \$ 32,012,299 | \$ 3,201,230 | \$ 13,470,902 | \$ 617,496,298 | \$ 412,724,221 | \$ 413,000,000 | | Alternative REM-0/0/3 | \$ 805,872,821 | \$ 483,138,331 | \$ 33,504,580 | \$ 3,350,458 | \$ 12,536,728 | \$ 839,377,401 | \$ 495,675,060 | \$ 496,000,000 | Hydraulic Removal and Landfill Disposal Alternatives | Alternative | Total Capital Costs -
Hydraulic Removal | 1 | Total O&M Costs -
Hydraulic Removal | | Present Worth of
O&M Costs -
Hydraulic Removal | Total Project Costs -
Hydraulic Removal | Present Worth of
Project Costs -
Hydraulic Removal | Present Worth of
Project Costs -
Hydraulic Removal -
Rounded | |-------------------------------|--|----------------|--|--------------|--|--|--|---| | No Action | NA | Monitored Natural Attenuation | NA | Alternative CAP-3/10/Select | NA | Alternative REM-3/10/Select | \$ 637,297,868 | \$ 434,176,457 | \$ 32,012,299 | \$ 3,201,230 | \$ 13,748,566 | \$ 669,310,167 | \$ 447,925,023 | \$ 448,000,000 | | Alternative REM-0/0/3 | \$ 896,055,967 | \$ 536,432,746 | \$ 33,504,580 | \$ 3,350,458 | \$ 13,077,629 | \$ 929,560,547 | \$ 549,510,375 | \$ 550,000,000 | Table 9-2 Non-TSCA Safety Margin Sensitivity Analysis: Disposal Quantities # CAP-3/10/Select | | Original | +50 ppm criteria | |------------------------------|-----------|------------------| | Volume Removed (cy) | 1,732,820 | 1,732,820 | | Disposal <50 ppm PCBs (tons) | 1,528,476 | 1,712,033 | | Disposal >50 ppm PCBs (tons) | 1,091,549 | 907,992 | | Total Disposal (tons) | 2,620,024 | 2,620,024 | # REM-3/10/Select | | Original | +50 ppm criteria | |------------------------------|-----------|------------------| | Volume Removed (cy) | 2,651,727 | 2,651,727 | | Disposal <50 ppm PCBs (tons) | 2,326,748 | 2,620,696 | | Disposal >50 ppm PCBs (tons) | 1,682,664 | 1,388,716 | | Total Disposal (tons) | 4,009,412 | 4,009,412 | # REM-0/0/3 | | Original | +50 ppm criteria | |------------------------------|-----------|------------------| | Volume Removed (cy) | 3,823,059 | 3,823,059 | | Disposal <50 ppm PCBs (tons) | 3,601,447 | 3,970,236 | | Disposal >50 ppm PCBs (tons) | 2,179,019 | 1,810,229 | | Total Disposal (tons) | 5,780,466 | 5,780,466 | Table 9-3a Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative CAP-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |--|-----------|----------|----------------------|----------|----------|----------------------| | | • | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | _ | | | | | | | Design Support Testing | 1 | \$ | 14,841,805 | LS | \$ | 14,841,805 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,782,821 | LS | \$ | 3,782,821 | | Site Prep and Facility Construction - North | 1 | \$ | 16,870,755 | LS | \$ | 16,870,755 | | Site Prep and Facility Construction - South | 1 | \$ | 8,020,003 | LS | \$ | 8,020,003 | | Dredging | 1,732,820 | \$ | 28.21 | CY | \$ | 48,875,485 | | Testing and Monitoring (during remediation) | 1 | \$ | 11,594,641 | LS | \$ | 11,594,641 | | Barging | 1,732,820 | \$ | 22.37 | CY | \$ | 38,761,904 | | Stabilization | 1,732,820 | \$ | 26.76 | CY | \$ | 46,370,678 | | Transport/Landfill Fee | | | | | | | | Load RR Car | 1,871,446 | \$ | 2.44 | CY | \$ | 4,568,086 | | Transportation/Disposal >50 ppm - Texas | 907,992 | \$ | 119.20 | tons | \$ | 108,232,068 | | Transportation/Disposal <50 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <50 ppm - Southeast | 899,030 | \$ | 55.16 | tons | \$ | 49,587,323 | | Sediment Sample & Analysis | 2,620,024 | \$ | 0.42 | tons | \$ | 1,098,678 | | Water Treatment | 1 | \$ | 1,166,701 | LS | \$ | 1,166,701 | | Backfilling | 441,174 | \$ | 55.00 | CY | \$ | 24,262,928 | | Capping | 207 | \$ | 174,302.80 | ACRES | \$
\$ | 36,080,679 | | Habitat & Vegetation Replacement | 1 | \$
\$ | 3,668,899 | LS | \$ | 3,668,899 | | River Bank Stabilization Construction Monitoring | 1
1 | \$ | 337,591
5,364,654 | LS
LS | \$ | 337,591
5,364,654 | | Total Capital Costs | 1 | φ | 3,304,034 | Lo | \$ | 492,371,341 | | Total Capital Costs | | | | | Ф | 492,371,341 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, | 2032 | | | | | | | Sediment Monitoring | 6 | \$ | 662,588 | Event | \$ | 3,975,528 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 6 | \$ | 360,130 | Event | \$ | 2,160,780 | | Post Construction O&M - Annual (for 25 years after construction is complete) | | | | | | | | Cap O&M (Visual Inspection) | 25 | \$ | 34,193 | Year | \$ | 854,825 | | Water Monitoring | 25 | \$ | 1,907,912 | Year | \$ | 47,697,800 | | Fish Monitoring | 25 | \$ | 893,378 | Year | \$ | 22,334,450 | | Annual Reporting | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Post Construction - Every 5 Years (for 25 years after construction is complete) | | | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | 5 | \$ | 1,384,231 | Event | \$ | 6,921,155 | | Modeling | 5 | \$ | 139,504 | Event | \$ | 697,520 | | Five-Year Review | 5 | \$ | 76,856 | Event | \$ | 384,280 | | Total O&M Costs
Annual O&M (for 25 years over O&M period of 2009 through 2033) | | | | | \$
\$ | 86,152,463 | | Annual O&M (for 25 years over O&M period of 2009 through 2055) | | | | | Ф | 3,446,099 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,012,951 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 314,441,167 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, | 2032 | | | | | | | Sediment Monitoring | | | | | \$ | 1,233,363 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 670,358 | | Post Construction O&M - Annual (Years 2009 to 2033) | | | | | | | | Cap O&M (Visual Inspection) | | | | | \$ | 239,868 | | Water Monitoring | | | | | \$ | 13,384,257 | | Fish Monitoring | | | | | \$ | 6,267,166 | | Annual Reporting | | | | | \$ | 315,997 | | Post Construction - Every 5 Years (Years 2009 to 2033) | | | | | | 4 -0 - 4 - 1 | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | | | | | \$ | 1,695,461 | | Modeling | | | | | \$ | 170,870 | | Five-Year Review | | | | | \$ | 94,136 | | Total Present Worth Costs for Alternative | | | | | \$ | 360,562,552 | | Round To | _ | | | | \$ | 361,000,000 | | Nound 10 | | 1 | | | Ψ | 501,000,000 | Table 9-3b Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----|------------|-------|----|-------------| | Conttol Costs | | | | | | | | Capital Costs Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 14,857,830 | LS | \$ | 14,857,830 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 1 | φ | 11,007,300 | Lo | Ф | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167
| | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 2,651,730 | \$ | 20.67 | CY | \$ | 54,822,487 | | Testing and Monitoring (during remediation) | 2,031,730 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 2,651,730 | \$ | 21.49 | CY | \$ | 56,987,426 | | Stabilization | 2,651,730 | \$ | 25.90 | CY | \$ | 68,679,950 | | Transport/Landfill Fee | 2,031,730 | ψ | 23.70 | CI | Ψ | 00,077,730 | | Load RR Car | 2,863,868 | \$ | 2.44 | CY | \$ | 6,990,529 | | Transportation/Disposal >50 ppm - Texas | 1,388,716 | \$ | 119.20 | tons | \$ | 165,534,016 | | Transportation/Disposal <50 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <50 ppm - Northeast Transportation/Disposal <50 ppm - Southeast | 1,807,698 | \$ | 55.16 | tons | \$ | 99,706,279 | | Sediment Sample & Analysis | 4,009,416 | \$ | 0.41 | tons | \$ | 1,644,393 | | Water Treatment | 4,009,410 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | 48,750,306 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | 1 | Ф | 3,304,034 | LS | \$ | 639,518,122 | | | | | | | | | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | Event | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | Duccout Wouth of Costs | | | | | | | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | 12.027.002 | | Design Support Testing (Year 2002) | 2) | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 200 | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 413,608,973 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | 004.000 | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | | 7.004.222 | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | | 102.052 | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | Total Present Worth Costs for Alternative | | | | | \$ | 449,143,835 | | | | | | | | | | Round To | | | | | \$ | 449,000,000 | Table 9-3c Non-TSCA Safety Margin Sensitivity Analysis: Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |--|------------------------|----------|----------------|----------|----------|--------------------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | 1 | ,,. | | ' | ,,. | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging To discuss the control of t | 3,823,060 | \$ | 22.76 | CY | \$ | 87,021,936 | | Testing and Monitoring (during remediation) | 2 922 060 | \$ | 20,172,039 | LS | \$ | 20,172,039 | | Barging
Stabilization | 3,823,060
3,823,060 | \$
\$ | 22.45
25.85 | CY
CY | \$
\$ | 85,829,051
98,838,282 | | Transport/Landfill Fee | 3,823,000 | Ф | 23.63 | CI | Ф | 90,030,202 | | Load RR Car | 4,128,905 | \$ | 2.44 | CY | \$ | 10,078,407 | | Transportation/Disposal >50 ppm - Texas | 1,810,230 | \$ | 119.20 | tons | \$ | 215,778,183 | | Transportation/Disposal <50 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <50 ppm - Southeast | 2,836,237 | \$ | 55.16 | tons | \$ | 156,436,896 | | Sediment Sample & Analysis | 5,780,467 | \$ | 0.42 | tons | \$ | 2,423,976 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | 76,118,770 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 908,248,507 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 33,504,580 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,350,458 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 200) | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 521,196,677 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | Φ. | 7,000,155 | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring
Annual Reporting | | | | | \$
\$ | 3,282,030 | | Annual Reporting Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | Ф | 165,483 | | Modeling Modeling | | | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | Tive feat review | | | | | Ψ | 77,270 | | Total Present Worth Costs for Alternative | | | | | \$ | 556,174,748 | | Round To | | | | | \$ | 556,000,000 | | ANY MANY AV | | 1 | | <u> </u> | Ψ | 220,000,000 | Table 9-4 Remediation Boundary Adjustment Sensitivity Analysis: Quantities # CAP-3/10/Select | | Original | +50 feet | -50 feet |
------------------------------|-----------|-----------|-----------| | Volume Removed (cy) | 1,732,820 | 1,970,785 | 1,175,131 | | Disposal <50 ppm PCBs (tons) | 1,528,476 | 1,738,384 | 1,036,556 | | Disposal >50 ppm PCBs (tons) | 1,091,549 | 1,241,443 | 740,242 | | Total Disposal (tons) | 2,620,024 | 2,979,827 | 1,776,798 | # REM-3/10/Select | | Original | +50 feet | -50 feet | |------------------------------|-----------|-----------|-----------| | Volume Removed (cy) | 2,651,727 | 2,953,187 | 2,077,169 | | Disposal <50 ppm PCBs (tons) | 2,326,748 | 2,632,411 | 1,851,546 | | Disposal >50 ppm PCBs (tons) | 1,682,664 | 1,832,808 | 1,289,133 | | Total Disposal (tons) | 4,009,412 | 4,465,219 | 3,140,680 | # REM-0/0/3 | | Original | +50 feet | -50 feet | |------------------------------|-----------|-----------|-----------| | Volume Removed (cy) | 3,823,059 | 3,879,909 | 3,592,456 | | Disposal <50 ppm PCBs (tons) | 3,601,447 | 3,694,161 | 3,420,470 | | Disposal >50 ppm PCBs (tons) | 2,179,019 | 2,172,261 | 2,011,324 | | Total Disposal (tons) | 5,780,466 | 5,866,422 | 5,431,793 | Table 9-5a Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Plus 50 Feet): Cost Analysis Alternative CAP-3/10/Select | Cost Item | Quantity | L | Unit Cost | Unit | | Cost | |---|-----------|----------|----------------------|----------|----------|----------------------| | | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | 14 041 007 | 1.0 | 6 | 14.041.007 | | Design Support Testing | 1 | \$ | 14,841,805 | LS | \$ | 14,841,805 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | , | 6 | 262 674 | T.C | ¢. | 262 674 | | Contractor Work Plans | 1 | \$
\$ | 363,674
3,350,454 | LS
LS | \$
\$ | 363,674
3,350,454 | | Health & Safety Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,782,821 | LS | \$ | 3,782,821 | | Site Prep and Facility Construction - North | 1 | \$ | 16,870,755 | LS | \$ | 16,870,755 | | Site Prep and Facility Construction - North | 1 | \$ | 8,020,003 | LS | \$ | 8,020,003 | | Dredging | 1,970,785 | \$ | 28.21 | CY | \$ | 55,587,466 | | Testing and Monitoring (during remediation) | 1,570,703 | \$ | 11,594,641 | LS | \$ | 11,594,641 | | Barging | 1,970,785 | \$ | 22.37 | CY | \$ | 44,085,005 | | Stabilization | 1,970,785 | \$ | 26.76 | CY | \$ | 52,738,678 | | Transport/Landfill Fee | 1,570,705 | Ψ | 20.70 | CI | Ψ | 32,730,070 | | Load RR Car | 2,128,448 | \$ | 2.44 | CY | \$ | 5,195,413 | | Transportation/Disposal >33 ppm - Texas | 1,241,443 | \$ | 119.20 | tons | \$ | 147,979,111 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 925,382 | \$ | 55.16 | tons | \$ | 51,040,854 | | Sediment Sample & Analysis | 2,979,827 | \$ | 0.42 | tons | \$ | 1,249,557 | | Water Treatment | 1 | \$ | 1,166,701 | LS | \$ | 1,166,701 | | Backfilling | 501,760 | \$ | 55.00 | CY | \$ | 27,594,912 | | Capping | 219 | \$ | 174,302.80 | ACRES | \$ | 38,172,313 | | Habitat & Vegetation Replacement | 1 | \$ | 3,668,899 | LS | \$ | 3,668,899 | | River Bank Stabilization | 1 | \$ | 337,591 | LS | \$ | 337,591 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | ļ · | .,, | | \$ | 558,176,821 | | | | | | | - | , | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 20 | 27, 2032 | | | | | | | Sediment Monitoring | 6 | \$ | 662,588 | Event | \$ | 3,975,528 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 6 | \$ | 360,130 | Event | \$ | 2,160,780 | | Post Construction O&M - Annual (for 25 years after construction is complete) | | | | | | | | Cap O&M (Visual Inspection) | 25 | \$ | 34,193 | Year | \$ | 854,825 | | Water Monitoring | 25 | \$ | 1,907,912 | Year | \$ | 47,697,800 | | Fish Monitoring | 25 | \$ | 893,378 | Year | \$ | 22,334,450 | | Annual Reporting | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Post Construction - Every 5 Years (for 25 years after construction is complete) | | | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | 5 | \$ | 1,384,231 | Event | \$ | 6,921,155 | | Modeling | 5 | \$ | 139,504 | Event | \$ | 697,520 | | Five-Year Review | 5 | \$ | 76,856 | Event | \$ | 384,280 | | Total O&M Costs | | | | | \$ | 86,152,463 | | Annual O&M (for 25 years over O&M period of 2009 through 2033) | | | | | \$ | 3,446,099 | | | | | | | | | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,012,951 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 358,794,810 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 20 | 27, 2032 | | | | Φ. | 1 222 252 | | Sediment Monitoring | | | | | \$ | 1,233,363 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 670,358 | | Post Construction O&M - Annual (Years 2009 to 2033) | | | | | Φ. | 220.050 | | Cap O&M (Visual Inspection) | | | | | \$ | 239,868 | | Water Monitoring | | | | | \$ | 13,384,257 | | Fish Monitoring | | | | | \$ | 6,267,166 | | Annual Reporting | | | | | \$ | 315,997 | | Post Construction - Every 5 Years (Years 2009 to 2033) | | | | | 6 | 1 (05 461 | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | | 1 | | | \$ | 1,695,461 | | Modeling Five Veca Paviery | | | | | \$ | 170,870 | | Five-Year Review | | | | | \$ | 94,136 | | Total Present Worth Costs for Alternative | | | | | \$ | 404,916,195 | | | | 1 | | | | | | Round To | | | | | \$ | 405,000,000 | Table 9-5b Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative CAP-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|-------------------------|----------|----------|-------------------------| | | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | _ | | | | _ | | | Design Support Testing | 1 | \$ | 14,841,805 | LS | \$ | 14,841,805 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | 262.674 | T () | | 262.674 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$
\$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management Mobilization/Demobilization | 1 | \$ | 9,321,669 | LS | \$
\$ | 9,321,669 | | | 1 | \$ | 3,782,821
16,870,755 | LS
LS | \$ | 3,782,821
16,870,755 | | Site Prep and Facility Construction - North Site Prep and Facility Construction - South | 1 | \$ | 8,020,003 | LS | \$ | 8,020,003 | | Dredging | 1,175,131 | \$ | 28.21 | CY | \$ | 33,145,449 | | Testing and Monitoring (during remediation) | 1,175,151 | \$ | 11,594,641 | LS | \$ | 11,594,641 | | Barging | 1,175,131 | \$ | 22.37 | CY | \$ | 26,286,813 | | Stabilization | 1,175,131 | \$ | 26.76 | CY | \$ | 31,446,787 | | Transport/Landfill Fee | 1,175,151 | Ψ | 20.70 | CI | Ψ | 31,440,707 | | Load RR Car | 1,269,141 | \$ | 2.44 | CY | \$ | 3,097,898 | | Transportation/Disposal >33 ppm - Texas | 740,242 | \$ | 119.20 | tons | \$ | 88,236,333 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Northeast | 223,554 | \$ | 55.16 | tons | \$ | 12,330,467 | | Sediment Sample & Analysis | 1,776,798 | \$ | 0.42 | tons | \$ | 745,081 | | Water Treatment | 1,770,750 | \$ | 1,166,701 | LS | \$ | 1,166,701 | | Backfilling | 299,187 | \$ | 55.00 | CY | \$ | 16,454,172 | | Capping | 179 | \$ | 174,302.80 | ACRES | \$ | 31,200,201 | | Habitat & Vegetation Replacement | 1 | \$ | 3,668,899 | LS | \$ | 3,668,899 | | River Bank Stabilization | 1 | \$ | 337,591 | LS | \$ | 337,591 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | T | -,,, | | \$ | 377,476,712 | | <u></u> | | | | | i i | , , . | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, 2 | 2032 | | | | | | | Sediment Monitoring | 6 | \$ | 662,588 | Event | \$ | 3,975,528 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 6 | \$ | 360,130 | Event | \$ | 2,160,780 | | Post Construction O&M - Annual (for 25 years after construction is complete) | | | | | | | | Cap O&M (Visual Inspection) | 25 | \$ | 34,193 | Year | \$ | 854,825 | | Water Monitoring | 25 | \$ | 1,907,912 | Year | \$ | 47,697,800 | | Fish Monitoring | 25 | \$ | 893,378 | Year | \$ | 22,334,450 | | Annual Reporting | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Post Construction - Every 5 Years (for 25 years after construction is complete) | | | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | 5 | \$ | 1,384,231 | Event | \$ | 6,921,155 | | Modeling | 5 | \$ | 139,504 | Event | \$ | 697,520 | | Five-Year Review | 5 | \$ | 76,856 | Event | \$ | 384,280 | | Total O&M Costs | | | | | \$ | 86,152,463 | | Annual O&M (for 25 years over O&M period of 2009 through 2033) | | | | | \$ | 3,446,099 | | D AND A RC A | | | | | | | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | • | 12.012.051 | | Design Support Testing (Year 2002) | | | | | \$ | 13,012,951 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$
\$ | 9,036,959 | | Construction (Years 2004 to 2008) Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 2027, | 1 | | |
| ф | 237,000,878 | | Sediment Monitoring - Conducted in Tears 2009, 2012, 2017, 2022, 2027, | 2032
 | | | | \$ | 1,233,363 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 670,358 | | Post Construction O&M - Annual (Years 2009 to 2033) | | | | | φ | 070,336 | | Cap O&M (Visual Inspection) | | | | | \$ | 239,868 | | Water Monitoring | | | | | \$ | 13,384,257 | | Fish Monitoring | | | | | \$ | 6,267,166 | | Annual Reporting | 1 | 1 | | | \$ | 315,997 | | Post Construction - Every 5 Years (Years 2009 to 2033) | 1 | 1 | | | 1 | 222,271 | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | | 1 | | | \$ | 1,695,461 | | Modeling | | 1 | | | \$ | 170,870 | | Five-Year Review | | 1 | | | \$ | 94,136 | | -110 1000 1011011 | | 1 | | | " | 7-1,130 | | Total Present Worth Costs for Alternative | | | | | \$ | 283,122,263 | | | | | | | | | | Round To | <u> </u> | <u>L</u> | | | \$ | 283,000,000 | Table 9-5c Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Plus 50 Feet): Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|--------------------------|----------|----------|--------------------------| | | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | d | 14.057.020 | 1.0 | d. | 14.057.020 | | Design Support Testing Design (includes Treatability Study and Model Development) | 1
1 | \$
\$ | 14,857,830
11,007,500 | LS
LS | \$
\$ | 14,857,830
11,007,500 | | Construction | 1 | Ф | 11,007,300 | Lo | φ | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 2,953,187 | \$ | 20.67 | CY | \$ | 61,054,880 | | Testing and Monitoring (during remediation) | 1 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 2,953,187 | \$
\$ | 21.49 | CY
CY | \$
\$ | 63,465,936 | | Stabilization
Transport/Landfill Fee | 2,953,187 | Э | 25.90 | CI | Ф | 76,487,703 | | Load RR Car | 3,189,442 | \$ | 2.44 | CY | \$ | 7,785,234 | | Transportation/Disposal >33 ppm - Texas | 1,832,808 | \$ | 119.20 | tons | \$ | 218,469,420 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 1,819,409 | \$ | 55.16 | tons | \$ | 100,352,245 | | Sediment Sample & Analysis | 4,465,219 | \$ | 0.41 | tons | \$ | 1,831,333 | | Water Treatment | 1 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | Backfilling | 948,450 | \$ | 57.24 | CY | \$ | 54,292,394 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | \$ | 720,141,880 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | • | | 120 501 | - | | 250 000 | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review Total O&M Costs | 2 | \$ | 76,856 | Event | \$
\$ | 153,712
32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | Annual Octor (for 10 years over Octor period of 2007 through 2010) | | | | | Ψ | 3,201,230 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 467,950,304 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | - | 100,, 10 | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | | | | | | | | | Total Present Worth Costs for Alternative | | <u> </u> | | | \$ | 503,485,167 | | | | | | | | #0.2 000 000 | | Round To | | | | | \$ | 503,000,000 | Table 9-5d Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|------------------------|----------|----------------|----------|----------|--------------------------| | S *15 / | | | | | | | | Capital Costs Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 14,857,830 | LS | \$ | 14,857,830 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | • | Ψ | 11,007,000 | 25 | Ψ. | 11,007,000 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging Tasting and Manitoring (during ground inting) | 2,077,169 | \$ | 20.67 | CY | \$ | 42,943,878 | | Testing and Monitoring (during remediation) | 1
2 077 160 | \$
\$ | 13,191,268 | LS
CY | \$
\$ | 13,191,268 | | Barging
Stabilization | 2,077,169
2,077,169 | \$ | 21.49
25.90 | CY | \$ | 44,639,731
53,798,789 | | Transport/Landfill Fee | 2,077,107 | Ψ | 23.70 | CI | Ψ | 33,776,767 | | Load RR Car | 2,243,343 | \$ | 2.44 | CY | \$ | 5,475,863 | | Transportation/Disposal >33 ppm - Texas | 1,289,133 | \$ | 119.20 | tons | \$ | 153,663,790 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 1,038,544 | \$ | 55.16 | tons | \$ | 57,282,479 | | Sediment Sample & Analysis | 3,140,680 | \$ | 0.41 | tons | \$ | 1,288,096 | | Water Treatment | 1 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | Backfilling | 667,107 | \$ | 57.24 | CY | \$ | 38,187,381 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | Э | 533,682,743 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | 2 | d. | 120 504 | F | ф. | 270.000 | | Modeling
Five-Year Review | 2 2 | \$
\$ | 139,504 | Event | \$
\$ | 279,008 | | Total O&M Costs | 2 | Ф | 76,856 | Event | \$ | 153,712
32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | a finitual occident (for 10 years over occident period of 2009 unrough 2010) | | | | | Ψ | 3,201,230 | | Present Worth of Costs | | | | | 1 | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 342,274,722 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | " | 100,740 | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | | | | | | 1 | , | | Total Present Worth Costs for Alternative | | <u>L</u> | | | \$ | 377,809,584 | | | | | | | | | | Round To | | | | | \$ | 378,000,000 | Table 9-5e Remediation Boundary Adjustment Sensitivity Analysis
(MPA Target Area Plus 50 Feet): Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|---------------------|----------|----------|--------------------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | | | | | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging Testing and Monitoring (during remediation) | 3,879,909 | \$
\$ | 22.76
20,172,039 | CY
LS | \$
\$ | 88,315,954
20,172,039 | | Barging | 3,879,909 | \$ | 20,172,039 | CY | \$ | 87,105,331 | | Stabilization | 3,879,909 | \$ | 25.85 | CY | \$ | 100,308,010 | | Transport/Landfill Fee | 3,877,707 | Ψ | 23.63 | CI | Ψ | 100,300,010 | | Load RR Car | 4,190,302 | \$ | 2.44 | CY | \$ | 10,228,273 | | Transportation/Disposal >33 ppm - Texas | 2,172,261 | \$ | 119.20 | tons | \$ | 258,932,068 | | Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm - Southeast | 2,560,161 | \$ | 55.16 | tons | \$ | 141,209,532 | | Sediment Sample & Analysis | 5,866,422 | \$ | 0.42 | tons | \$ | 2,460,020 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,500,828 | \$ | 51.47 | CY | \$ | 77,250,658 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 941,532,853 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs
Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$
\$ | 33,504,580
3,350,458 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | Þ | 3,330,436 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | l | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 200 | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 540,866,315 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | Φ. | 7,000,155 | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring
Annual Reporting | | l | | | \$ | 3,282,030 | | Annual Reporting Post Construction - Every 5 Years (Years 2011 to 2020) | | l | | | \$ | 165,483 | | Modeling Modeling | | l | | | \$ | 89,482 | | Five-Year Review | | l | | | \$ | 49,298 | | The real review | | | | | Ψ, | 77,270 | | Total Present Worth Costs for Alternative | | <u> </u> | | | \$ | 575,844,385 | | Round To | | | | | \$ | 576,000,000 | | Nouna 10 | | 1 | | | φ | 370,000,000 | Table 9-5f Remediation Boundary Adjustment Sensitivity Analysis (MPA Target Area Minus 50 Feet): Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|--------------------------|----------|----------|--------------------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | | | | | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$
\$ | 15,087,919
11,466,128 | LS | \$
\$ | 15,087,919
11,466,128 | | Site Prep and Facility Construction - South Dredging | 3,592,456 | \$ | 22.76 | LS
CY | \$ | 81,772,841 | | Testing and Monitoring (during remediation) | 1 | \$ | 20,172,039 | LS | \$ | 20,172,039 | | Barging | 3,592,456 | \$ | 22.45 | CY | \$ | 80,651,910 | | Stabilization | 3,592,456 | \$ | 25.85 | CY | \$ | 92,876,434 | | Transport/Landfill Fee | - , , | | | | l ' | ,,,,,, | | Load RR Car | 3,879,852 | \$ | 2.44 | CY | \$ | 9,470,485 | | Transportation/Disposal >33 ppm - Texas | 2,011,324 | \$ | 119.20 | tons | \$ | 239,748,422 | | Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm - Southeast | 2,286,470 | \$ | 55.16 | tons | \$ | 126,113,672 | | Sediment Sample & Analysis | 5,431,793 | \$ | 0.42 | tons | \$ | 2,277,764 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,389,636 | \$ | 51.47 | CY | \$ | 71,527,345 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 880,161,879 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 33,504,580 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,350,458 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 200 | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 504,598,671 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | | | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring | | | | | \$ | 3,282,030 | | Annual Reporting | | | | | \$ | 165,483 | | Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | | 22.15 | | Modeling | | | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | Total Present Worth Costs for Alternative | | | | | \$ | 539,576,742 | | Round To | | | | | \$ | 540,000,000 | | Nouna 10 | | | | | Ψ | 340,000,000 | Table 9-6 Cap Thickness Reduction Sensitivity Analysis: Quantities # CAP-3/10/Select | | Original | 6" Cap Thickness | |------------------------------|-----------|------------------| | Capping Area (acres) | 207 | 207 | | Removal Volume (cy) | 1,732,820 | 1,625,820 | | Disposal <50 ppm PCBs (tons) | 1,528,476 | 1,434,099 | | Disposal >50 ppm PCBs (tons) | 1,091,549 | 1,024,141 | | Total Disposal (tons) | 2,620,024 | 2,458,240 | Table 9-7 Cap Thickness Reduction Sensitivity Analysis: Cost Analysis Alternative CAP-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|------------------------|----------|----------|------------------------| | | | | | | | | | Capital Costs | | 1 | | | | | | Pre-Construction Studies and Design | , | | 14 041 007 | 1.0 | 6 | 14.041.005 | | Design Support Testing | 1 | \$ | 14,841,805 | LS
LS | \$ | 14,841,805 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction Wash Plans | 1 | 0 | 262 674 | T.C | ¢. | 262 674 | | Contractor Work Plans | 1 | \$
\$ | 363,674 | LS
LS | \$
\$ | 363,674 | | Health & Safety | 1
1 | \$ | 3,350,454
9,321,669 | LS
LS | \$ |
3,350,454
9,321,669 | | Construction Management Mobilization/Demobilization | 1 | \$ | 3,782,821 | LS | \$ | 3,782,821 | | Site Prep and Facility Construction - North | 1 | \$ | 16,870,755 | LS | \$ | 16,870,755 | | Site Prep and Facility Construction - North Site Prep and Facility Construction - South | 1 | \$ | 8,020,003 | LS | \$ | 8,020,003 | | Dredging | 1,625,820 | \$ | 28.21 | CY | \$ | 45,857,470 | | Testing and Monitoring (during remediation) | 1,023,820 | \$ | 11,594,641 | LS | \$ | 11,594,641 | | Barging | 1,625,820 | \$ | 22.37 | CY | \$ | 36,368,393 | | Stabilization | 1,625,820 | \$ | 26.76 | CY | \$ | 43,507,332 | | Transport/Landfill Fee | 1,023,020 | Ψ | 20.70 | CI | Ψ | 13,307,332 | | Load RR Car | 1,755,886 | \$ | 2.44 | CY | \$ | 4,286,011 | | Transportation/Disposal >33 ppm - Texas | 1,024,141 | \$ | 119.20 | tons | \$ | 122,076,946 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 621,097 | \$ | 55.16 | tons | \$ | 34,257,514 | | Sediment Sample & Analysis | 2,458,240 | \$ | 0.42 | tons | \$ | 1,030,836 | | Water Treatment | 1 | \$ | 1,166,701 | LS | \$ | 1,166,701 | | Backfilling | 441,174 | \$ | 55.00 | CY | \$ | 24,262,928 | | Capping | 207 | \$ | 87,151.40 | ACRES | \$ | 18,040,340 | | Habitat & Vegetation Replacement | 1 | \$ | 3,668,899 | LS | \$ | 3,668,899 | | River Bank Stabilization | 1 | \$ | 337,591 | LS | \$ | 337,591 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | 1 | φ | 3,304,034 | LO | \$ | 464,221,281 | | Total Capital Costs | | | | | φ | 404,221,281 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 202 | 7 2032 | | | | | | | Sediment Monitoring | 6 | \$ | 662,588 | Event | \$ | 3,975,528 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 6 | \$ | 360,130 | Event | \$ | 2,160,780 | | Post Construction O&M - Annual (for 25 years after construction is complete) | | ' | , | | | ,, | | Cap O&M (Visual Inspection) | 25 | \$ | 34,193 | Year | \$ | 854,825 | | Water Monitoring | 25 | \$ | 1,907,912 | Year | \$ | 47,697,800 | | Fish Monitoring | 25 | \$ | 893,378 | Year | \$ | 22,334,450 | | Annual Reporting | 25 | \$ | 45,045 | Year | \$ | 1,126,125 | | Post Construction - Every 5 Years (for 25 years after construction is complete) | | | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | 5 | \$ | 1,384,231 | Event | \$ | 6,921,155 | | Modeling | 5 | \$ | 139,504 | Event | \$ | 697,520 | | Five-Year Review | 5 | \$ | 76,856 | Event | \$ | 384,280 | | Total O&M Costs | | | | | \$ | 86,152,463 | | Annual O&M (for 25 years over O&M period of 2009 through 2033) | | | | | \$ | 3,446,099 | | | | | | | | | | Present Worth of Costs | | 1 | | | | | | Pre-Construction Studies and Design | | 1 | | | l . | | | Design Support Testing (Year 2002) | | 1 | | | \$ | 13,012,951 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 295,467,706 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017, 2022, 202 | 7, 2032 | | | | | | | Sediment Monitoring | | | | | \$ | 1,233,363 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 670,358 | | Post Construction O&M - Annual (Years 2009 to 2033) | | | | | | | | Cap O&M (Visual Inspection) | | | | | \$ | 239,868 | | Water Monitoring | | | | | \$ | 13,384,257 | | Fish Monitoring | | 1 | | | \$ | 6,267,166 | | Annual Reporting | | 1 | | | \$ | 315,997 | | Post Construction - Every 5 Years (Years 2009 to 2033) | | 1 | | | | | | Cap O&M (Cap Repair and Side Scan Sonar Survey) | | 1 | | | \$ | 1,695,461 | | Modeling | | 1 | | | \$ | 170,870 | | Five-Year Review | | 1 | | | \$ | 94,136 | | Total Present Worth Costs for Alternative | | | | | \$ | 341,589,091 | | | | | | | ¢ | | | Round To | | 1 | | | \$ | 342,000,000 | Table 9-8 Depth of Removal Adjustment Sensitivity Analysis: Quantities # REM-3/10/Select | | Original | +1 foot | -1 foot | |------------------------------|-----------|-----------|-----------| | Volume Removed (cy) | 2,651,727 | 3,348,690 | 1,954,770 | | Disposal <50 ppm PCBs (tons) | 2,326,748 | 2,984,955 | 1,742,442 | | Disposal >50 ppm PCBs (tons) | 1,682,664 | 2,078,265 | 1,213,170 | | Total Disposal (tons) | 4,009,412 | 5,063,219 | 2,955,612 | # REM-0/0/3 | | Original | +1 foot | -1 foot | |------------------------------|-----------|-----------|-----------| | Volume Removed (cy) | 3,823,059 | 5,308,940 | 2,337,180 | | Disposal <50 ppm PCBs (tons) | 3,601,447 | 5,054,778 | 2,225,289 | | Disposal >50 ppm PCBs (tons) | 2,179,019 | 2,972,339 | 1,308,527 | | Total Disposal (tons) | 5,780,466 | 8,027,117 | 3,533,816 | Table 9-9a Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Plus 1 Foot): Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----|------------|-------|----|-------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 14,857,830 | LS | \$ | 14,857,830 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 1 | Ψ | 11,007,300 | L | φ | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | | | | | | | | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 3,348,690 | \$ | 20.67 | CY | \$ | 69,231,601 | | Testing and Monitoring (during remediation) | 1 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 3,348,690 | \$ | 21.49 | CY | \$ | 71,965,556 | | Stabilization | 3,348,690 | \$ | 25.90 | CY | \$ | 86,731,252 | | Transport/Landfill Fee | | | | | | | | Load RR Car | 3,616,585 | \$ | 2.44 | CY | \$ | 8,827,865 | | Transportation/Disposal >33 ppm - Texas | 2,078,265 | \$ | 119.20 | tons | \$ | 247,727,747 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 2,171,953 | \$ | 55.16 | tons | \$ | 119,797,304 | | Sediment Sample & Analysis | 5,063,219 | \$ | 0.41 | tons | \$ | 2,076,592 | | Water Treatment | 1 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | | | | | | | | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | 48,750,306 | | Habitat & Vegetation Replacement | 1 | \$ | 3,734,322 | LS | \$ | 3,734,322 | | River Bank Stabilization | 1 | \$ | 1,150,693 | LS | \$ | 1,150,693 | | Construction Monitoring | 1 | \$ | 5,364,654 | LS | \$ | 5,364,654 | | Total Capital Costs | | | | | \$ | 791,510,960 | | | | | | | | | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | , | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | 10 | Ψ | 45,045 | ı caı | φ | 430,430 | | | 2 | ф. | 120.504 | Б | φ. | 270.000 | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | Event | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | | | | | | | | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 516,053,877 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | | , , | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | φ | 302,033 | | · · · · · · · · · · · · · · · · · · · | | | | | φ. | 7.004.220 | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | | | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | Total Present Worth Costs for Alternative | | | | | \$ | 551,588,739 | | A COURT TO THE COSTS AND FREE HEALTY | | + | | | φ | 551,500,737 | | Round To | | 1 | | | \$ | 552,000,000 | Table 9-9b Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Minus 1 Foot): Cost Analysis Alternative REM-3/10/Select | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |--|-----------|----------|------------|----------|----------|------------------------| | aa . | | | | | | | | Capital Costs | | | | | | | | Pre-Construction Studies and Design Design Support Testing | 1 | \$ | 14,857,830 | LS | \$ | 14,857,830 | | Design Support Testing Design (includes Treatability Study and
Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | 1 | φ | 11,007,500 | Lis | Ψ | 11,007,500 | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 3,350,454 | LS | \$ | 3,350,454 | | Construction Management | 1 | \$ | 9,321,669 | LS | \$ | 9,321,669 | | Mobilization/Demobilization | 1 | \$ | 3,788,167 | LS | \$ | 3,788,167 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 9,234,334 | LS | \$ | 9,234,334 | | Dredging | 1,954,770 | \$ | 20.67 | CY | \$ | 40,413,373 | | Testing and Monitoring (during remediation) | 1 | \$ | 13,191,268 | LS | \$ | 13,191,268 | | Barging | 1,954,770 | \$ | 21.49 | CY | \$ | 42,009,296 | | Stabilization | 1,954,770 | \$ | 25.90 | CY | \$ | 50,628,648 | | Transport/Landfill Fee | | | | | | | | Load RR Car | 2,111,152 | \$ | 2.44 | CY | \$ | 5,153,193 | | Transportation/Disposal >33 ppm - Texas | 1,213,170 | \$ | 119.20 | tons | \$ | 144,609,017 | | Transportation/Disposal <33 ppm - Northeast | 813,002 | \$ | 55.16 | tons | \$ | 44,842,345 | | Transportation/Disposal <33 ppm - Southeast | 929,440 | \$ | 55.16 | tons | \$ | 51,264,684 | | Sediment Sample & Analysis | 2,955,612 | \$ | 0.41 | tons | \$ | 1,212,194 | | Water Treatment | 1 | \$ | 1,107,907 | LS | \$ | 1,107,907 | | Backfilling | 851,634 | \$ | 57.24 | CY | \$ | 48,750,306 | | Habitat & Vegetation Replacement | 1
1 | \$ | 3,734,322 | LS | \$
\$ | 3,734,322 | | River Bank Stabilization Construction Monitoring | 1 | \$
\$ | 1,150,693 | LS
LS | \$ | 1,150,693
5,364,654 | | Total Capital Costs | 1 | Ф | 5,364,654 | LS | \$ | 520,443,447 | | | | | | | | | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | 2 | | 662 500 | ъ. | ф | 1.007.764 | | Sediment Monitoring | 3 | \$ | 662,588 | Event | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) Post Construction O&M - Annual (for 10 years after construction is complete) | 3 | \$ | 376,155 | Event | \$ | 1,128,465 | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | 10 | Ψ | 43,043 | 1 Cai | Ψ | 430,430 | | Modeling | 2 | \$ | 139,504 | Event | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | Event | \$ | 153,712 | | Total O&M Costs | - | ļ . | 70,020 | | \$ | 32,012,299 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,201,230 | | Present Worth of Costs | | | | | | | | Present worth of Costs Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,027,002 | | Design (includes Treatability Study and Model Development) (Year 2003) | | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2008) | | | | | \$ | 333,351,285 | | Post Construction Sediment Monitoring - Conducted in Years 2009, 2012, 2017 | | | | | Ψ | 333,331,203 | | Sediment Monitoring | | | | | \$ | 884,323 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 502,035 | | Post Construction O&M - Annual (Years 2009 to 2018) | | | | | | | | Water Monitoring | | | | | \$ | 7,994,229 | | Fish Monitoring | | | | | \$ | 3,743,290 | | Annual Reporting | | | | | \$ | 188,740 | | Post Construction - Every 5 Years (Years 2009 to 2018) | | | | | 1 | | | Modeling | | | | | \$ | 102,058 | | Five-Year Review | | | | | \$ | 56,226 | | Total Present Worth Costs for Alternative | | | | | \$ | 368,886,147 | | Pound To | | | | | ¢ | 360 000 000 | | Round To | | | | | \$ | 369,000,000 | Table 9-9c Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Plus 1 Foot): Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|-----------|----------|---------------------|----------|----------|---------------------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | | | | | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1 | \$ | 11,466,128 | LS | \$ | 11,466,128 | | Dredging Testing and Monitoring (during remediation) | 5,308,940 | \$
\$ | 22.76
20,172,039 | CY
LS | \$ | 120,844,098
20,172,039 | | | 5,308,940 | \$ | 20,172,039 | CY | \$
\$ | 119,187,583 | | Barging
Stabilization | 5,308,940 | \$ | 25.85 | CY | \$ | 137,253,014 | | Transport/Landfill Fee | 3,306,940 | φ | 23.63 | CI | φ | 137,233,014 | | Load RR Car | 5,733,655 | \$ | 2.44 | CY | \$ | 13,995,505 | | Transportation/Disposal >33 ppm - Texas | 2,972,339 | \$ | 119.20 | tons | \$ | 354,300,787 | | Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm - Southeast | 3,920,778 | \$ | 55.16 | tons | \$ | 216,256,414 | | Sediment Sample & Analysis | 8,027,117 | \$ | 0.42 | tons | \$ | 3,366,084 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | 76,118,770 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 1,217,045,263 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | | | | | | | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Total O&M Costs | | | | | \$ | 33,504,580 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$ | 3,350,458 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 200 | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 703,682,465 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | | | | Water Monitoring | | | | | \$ | 7,009,155 | | Fish Monitoring | | | | | \$ | 3,282,030 | | Annual Reporting Post Construction From: 5 Years (Years 2011 to 2020) | | | | | \$ | 165,483 | | Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | e. | 00.402 | | Modeling Fire Veer Parious | | | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | Total Present Worth Costs for Alternative | | <u> </u> | | | \$ | 738,660,536 | | Round To | | | | | \$ | 739,000,000 | | Notified 10 | | - | | | Ψ | 755,000,000 | Table 9-9d Depth of Removal Adjustment Sensitivity Analysis (Original Depth of Removal Minus 1 Foot): Cost Analysis Alternative REM-0/0/3 | Cost Item | Quantity | | Unit Cost | Unit | | Cost | |---|----------------|----------|---------------------|----------|----------|--------------------------| | Capital Costs | | | | | | | | Pre-Construction Studies and Design | | | | | | | | Design Support Testing | 1 | \$ | 15,288,250 | LS | \$ | 15,288,250 | | Design (includes Treatability Study and Model Development) | 1 | \$ | 11,007,500 | LS | \$ | 11,007,500 | | Construction | | | | | | | | Contractor Work Plans | 1 | \$ | 363,674 | LS | \$ | 363,674 | | Health & Safety | 1 | \$ | 4,682,861 | LS | \$ | 4,682,861 | | Construction Management | 1 | \$ | 13,024,085 | LS | \$ | 13,024,085 | | Mobilization/Demobilization | 1 | \$ | 5,512,389 | LS | \$ | 5,512,389 | | Site Prep and Facility Construction - North | 1 | \$ | 15,087,919 | LS | \$ | 15,087,919 | | Site Prep and Facility Construction - South | 1
2 227 190 | \$ | 11,466,128 | LS | \$
\$ | 11,466,128 | | Dredging Testing and Monitoring (during remediation) | 2,337,180 | \$
\$ | 22.76
20,172,039 | CY
LS | \$ | 53,199,774
20,172,039 | | Barging | 2,337,180 | \$ | 22.45 | CY | \$ | 52,470,519 | | Stabilization | 2,337,180 | \$ | 25.85 | CY | \$ | 60,423,550 | | Transport/Landfill Fee | 2,337,100 | Ψ | 23.03 | | Ψ | 00,123,330 | | Load RR Car | 2,524,154 | \$ | 2.44 | CY | \$ | 6,161,308 | | Transportation/Disposal >33 ppm - Texas | 1,308,527 | \$ | 119.20 | tons | \$ | 155,975,527 | | Transportation/Disposal <33 ppm - Northeast | 1,134,000 | \$ | 55.16 | tons | \$ | 62,547,471 | | Transportation/Disposal <33 ppm
- Southeast | 1,091,289 | \$ | 55.16 | tons | \$ | 60,191,694 | | Sediment Sample & Analysis | 3,533,816 | \$ | 0.42 | tons | \$ | 1,481,867 | | Water Treatment | 1 | \$ | 1,550,606 | LS | \$ | 1,550,606 | | Backfilling | 1,478,838 | \$ | 51.47 | CY | \$ | 76,118,770 | | Habitat & Vegetation Replacement | 1 | \$ | 7,255,607 | LS | \$ | 7,255,607 | | River Bank Stabilization | 1 | \$ | 1,472,475 | LS | \$ | 1,472,475 | | Construction Monitoring | 1 | \$ | 6,292,003 | LS | \$ | 6,292,003 | | Total Capital Costs | | | | | \$ | 641,746,016 | | O&M Costs | | | | | | | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | 3 | \$ | 662,588 | EA | \$ | 1,987,764 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | 3 | \$ | 873,582 | EA | \$ | 2,620,746 | | Post Construction O&M - Annual (for 10 years after construction is complete) | | | | | | | | Water Monitoring | 10 | \$ | 1,907,912 | Year | \$ | 19,079,120 | | Fish Monitoring | 10 | \$ | 893,378 | Year | \$ | 8,933,780 | | Annual Reporting | 10 | \$ | 45,045 | Year | \$ | 450,450 | | Post Construction - Every 5 Years (for 10 years after construction is complete) | _ | | | | | | | Modeling | 2 | \$ | 139,504 | EA | \$ | 279,008 | | Five-Year Review Total O&M Costs | 2 | \$ | 76,856 | EA | \$ | 153,712 | | Annual O&M (for 10 years over O&M period of 2009 through 2018) | | | | | \$
\$ | 33,504,580
3,350,458 | | Annual Octivi (for 10 years over Octivi period of 2007 through 2010) | | | | | Ψ | 3,330,436 | | Present Worth of Costs | | | | | | | | Pre-Construction Studies and Design | | l | | | | | | Design Support Testing (Year 2002) | | | | | \$ | 13,404,384 | | Design (includes Treatability Study and Model Development) (Year 200 | 3) | | | | \$ | 9,036,959 | | Construction (Years 2004 to 2010) | | | | | \$ | 363,705,007 | | Post Construction Sediment Monitoring - Conducted in Years 2011, 2014, 2019 | | | | | | | | Sediment Monitoring | | | | | \$ | 775,354 | | Geophysical Survey (includes Multibeam Survey & Bathymetry) | | | | | \$ | 1,165,926 | | Post Construction O&M - Annual (Years 2011 to 2020) | | | | | d. | 7,000,155 | | Water Monitoring
Fish Monitoring | | l | | | \$
\$ | 7,009,155
3,282,030 | | Annual Reporting | | l | | | \$ | 3,282,030
165,483 | | Post Construction - Every 5 Years (Years 2011 to 2020) | | | | | Ψ | 105,405 | | Modeling | | l | | | \$ | 89,482 | | Five-Year Review | | | | | \$ | 49,298 | | | | | | | | | | Total Present Worth Costs for Alternative | | <u> </u> | | | \$ | 398,683,078 | | Round To | | | | | \$ | 399,000,000 | | Avunu 10 | | 1 | | <u> </u> | ψ | 377,000,000 | Table 9-10 Summary of Cost Sensitivity Analyses | Alternative | resent Worth of
Total Costs -
Rounded | Original Depth of
Removal Plus 1 Foot | Original Depth of
Removal Minus 1
Foot | MPA Target Area
Plus 50 Feet | MPA Target Area
Minus 50 Feet | TSCA Disposal
Criteria at 50 ppm
instead of 33 ppm | Cap Thickness of 6
Inches Instead of 1 Foot | |-------------------------------|---|--|--|---------------------------------|----------------------------------|--|--| | No Action | \$
140,000 | NA | NA | NA | NA | NA | NA | | Monitored Natural Attenuation | \$
39,000,000 | NA | NA | NA | NA | NA | NA | | Alternative CAP-3/10/Select | \$
370,000,000 | NA | NA | \$ 405,000,000 | \$ 283,000,000 | \$ 361,000,000 | \$ 342,000,000 | | Alternative REM-3/10/Select | \$
460,000,000 | \$ 552,000,000 | \$ 369,000,000 | \$ 503,000,000 | \$ 378,000,000 | \$ 449,000,000 | NA | | Alternative REM-0/0/3 | \$
570,000,000 | \$ 739,000,000 | \$ 399,000,000 | \$ 576,000,000 | \$ 540,000,000 | \$ 556,000,000 | NA |